Анатомия крыла. Механизация крыла самолета: описание, принцип работы и устройство. Нервная система у птиц

Крылья опираются на грудной пояс, который состоит из лопаток, коракоидов, сращенных ключиц, плечевой кости и костей крыльев (рисунок 1.8.1). Главные сухожилия, контролирующие движения крыльев, соединены с мощными грудными мышцами, прикрепленными к килю и ключицам.

Эта система служит для облегчения крыльев и находится ниже центра тяжести, повышая устойчивость птицы. Сразу под кожей лежат мощные мышцы, которые опускают крылья, толкая птицу вперед. Между ними и грудиной находятся надлопаточные мышцы, которые поднимают крылья, используя сухожилия, проходящие через блочные отверстия в каждом плече, называемые триассильными каналами. Поскольку поднимать крылья проще, чем опускать, надлопаточные мышцы по размеру составляют лишь 5-10% от грудных.

Грудные мышцы состоят из красных и белых мышечных волокон. Это более подробно обсуждается в 5.15. Грудные мышцы имеют почти в два раза больше митохондрий, чем надлопаточные и примерно в 1.5 раза большую окислительную активность. Мои данные по ястребу-перепелятнику, дербнику, обыкновенной пустельге, пятерым новозеландским соколам, двум обыкновенным сарычам, красному коршуну, балобану, Харрису и белоголовому сипу показывают, что грудные мышцы составляют 11.3 - 17.6% от общего веса тела, а надлопаточные - 0.9-1.5%. Белоголовый сип имеет относительно самые мощные грудные мышцы, что отражает масштаб такой большой птицы (9.25 килограмм), но в то же время у него самые маленькие надлопаточные мышцы (см. 1.16).

Ястребы имеют не только красные волокна, служащие для обычного полета, но и белые волокна, служащие для спринта. Это позволяет им взлетать с руки с силой взмывающего фазана. При ускорении и при наборе высоты ястребы развивают тяговую силу как при взмахе, так и при опускании крыла (см. 1.16). Плечи разворачиваются, обеспечивая направленный назад мах с помощью выемчатых первостепенных маховых, которые имея запас энергии, выпрямляются при взмахе. Надлопаточные мышцы, которые поднимают крылья, имеют относительно высокое содержание белых волокон и заметно бледнее. Они придают некоторую силу взмахам во время спринта.

Сокращающиеся грудные мышцы тянут вниз верхнюю часть крыла, или плечевую кость (рисунок 1.8.2). Она заполнена воздухом и сообщается с системой воздушных мешков. В своей плости она усилена небольшими крестообразными структурами. К плечевой кости крепятся только мелкие третьестепенные перья. От плечевой кости отходит лучевая и локтевая кости, к которым крепятся второстепенные маховые, каждое перо крепится двумя лигамеитами к небольшим костным узлам на локтевой кости. Второстепенные маховые обеспечивают подъем, их количество варьирует от десяти у ястребов до тринадцати у обыкновенного сарыча и двадцати пяти у орла-скомороха. Между 4 и 5 пером находится дополнительное кроющее или покровное перо, которое внешне выглядит как выпавшее второстепенное. Длинная и тонкая лучевая кость располагается вдоль внешнего края крыла, она действует как скрепляющая скоба. При сильном столкновении с препятствием, лучевая кость ломается в числе первых.

Между плечевой и лучевой костями (рисунок 1.8.2) находится большой лоскут кожи, называемый пропатагиум, который придает профилю крыла аэродинамически «ровный» край. Он удерживается двумя эластичными сухожилиями, которые идут к небольшим мышцам на плече. Если они ослабевают, то при опускании крыльев пропатагиум не может полностью сжаться и остается видимая складка. В некоторых линиях сапсанов это распространенное явление. Заметного влияния на полет птицы это не оказывает, однако, птицы с таким дефектом не должны использоваться для разведения. Если в результате несчастного случая эластичные сухожилия полностью разрываются, их необходимо очень точно сшить, если необходимо, чтобы птица полностью восстановила способность к полету и должный аэродинамический профиль крыла.

Лучевая и локтевая кости соединены с запястьем, или запястным суставом, который, как и наше запястье, является сложным по строению и движениям. Ушиб или повреждение сустава может вызвать отек суставной капсулы, известный как «волдырь» - воспаление сумки, похожее на травматический эпикондилит или препателлярный бурсит. Как и большинство проблем с суставами лечится покоем и теплом. Однако он может снова проявиться под влиянием напряжения и устойчиво сохраняться, в этом случае ловчую птицу следует оградить от требующего усилий полета.

От запястного сустава отходят две структуры: придаточное крыло и манус, или кисть. Придаточное крыло является рудиментом большого пальца и несет три маленьких жестких пера, называемых крылышком. Когда скорость проходящего через крыло воздуха падает ниже определенного значения, придаточное крыло выпрямляется и действуeт как Handley Page, выравнивая воздушный поток и гася турбулентность, что позволяет птице лететь медленнее, без сваливания. Это хорошо видно, когда птица приземляется или тормозит.

Кисть состоит из сращенных рудиментарных пальцев, к которым крепятся десять первостепенных маховых. Первостепенные маховые отвечают за тяговую силу. При складывании крыльев они прячутся под второстепенные маховые. Способ их работы сложен, как и работа крыла в целом. Следует скептически относится к заявлениям некоторых реабилитаторов, относительно того, что птица летает нормально только потому, что она может пролететь несколько сотен метров. Ястреб или крупный сокол после выздоровления может и способен на внешне нормальный крейсерский полет, но при этом у него может быть недостаточно сил, быстроты и выносливости для успешной атаки. Многие виды птиц, которые используют крылья в основном для перемещения, смогут пережить серьезные повреждения крыла, но активные хищники не смогут.

Ощущение полета всегда представляли себе как что-то необыкновенное, как восторг и радость. Сила тяжести прижимает нас к поверхности Земли, и мы пытаемся найти средства, чтобы освободиться от ее объятий.

Люди были пятыми представителями животного царства, поднявшимися в воздух и научившимися летать на большие расстояния. Первыми 300 миллионов лет назад взлетели насекомые, и они до сих пор остаются самой многочисленной и самой преуспевающей группой летающих животных. Их наружный скелет легко адаптируется, образуя крылья, а малые размеры тела способствуют тому, что отношение поверхности к объему у них благоприятно для полета. После насекомых воздушное пространство освоили птерозавры, а затем птицы и летучие мыши.

Птерозавры - летающие рептилии - исчезли 80-100 млн. лет назад, в период, когда вымерли многие рептилии. Иногда их считают «ошибкой эволюции», группой, выброшенной на свалку истории. Однако период их существования охватывал 50-60 млн. лет, а такому летному стажу можно позавидовать. По своему строению птерозавры напоминали планеры с перепончатыми крыльями, поддерживаемыми единственным вытянутым пальцем. Это были животные весьма различных размеров - от небольших, величиной с воробья, до таких, как, например, птеранодон, у которого при сравнительно небольшом теле (с лебедя) размах крыльев достигал 7 метров. Птерозавры, видимо, не имели мощной летательной мускулатуры, судя по тому что грудная кость у них была небольшой. Обитали они, вероятно, на отвесных приморских скалах, откуда планировали вниз для ловли рыбы, а затем снова взлетали к своим гнездам.

Единственная группа млекопитающих, способных к активному полету, - летучие мыши. Их перепончатые крылья поддерживаются несколькими пальцами передних конечностей, задними конечностями и у некоторых видов хвостом. Многие из этих животных невелики, однако у крыланов размах крыльев может достигать полутора метров. Летучие мыши чаще всего ведут ночной образ жизни, ориентируясь с помощью ультразвуковой локации (система эхолокации, использующая высокочастотные звуки, не слышимые человеческим ухом). Аналогичную систему, но в диапазоне слышимых нами частот используют южноамериканские птицы гуахаро, живущие в темных пещерах и вылетающие на поиски пальмовых орехов.

У некоторых животных, не способных к настоящему длительному полету, имеются крылоподобные структуры, позволяющие им планировать. Такие приспособления есть у различных рыб, лягушек и рептилий. Например, летучий дракон-ящерица длиной около 20 см, обитающая в юго-восточной Азии, - имеет уплощенное тело и похожие на крылья кожные перепонки, прикрепленные к последним шести или семи ребрам. Во время ухаживания животное планирует с дерева на дерево, совершая в воздухе полный оборот.

Строение крыла приспособлено к образу жизни данной птицы, будь то летающая с дьявольской быстротой ласточка, парящий наподобие планера кондор или передвигающийся по земле фазан. Миколог и исследователь птиц Сэвайл выделил ряд наиболее обычных типов крыла.

Эллиптическое крыло

Птицы, живущие в лесах и на земле, такие как куриные, голуби, дятлы и многие воробьиные, имеют короткие широкие крылья с множеством щелей (изменяемых промежутков между маховыми перьями первого порядка). Такое строение обеспечивает высокую маневренность и быстрый взлет.

Высокоскоростное крыло

Птицы, кормящиеся подобно стрижам в воздухе или совершающие длительные миграции, как, например, крачки, имеют длинные, относительно узкие крылья. Такое крыло лучше приспособлено к быстрому равномерному полету, чем к скоростному взлету и аневрированию в ограниченном пространстве.

Крыло с высоким отношением длины к ширине

Очень длинные, узкие крылья парящих морских птиц, таких как альбатросы и буревестники, приспособлены к высоко cкоростному планированию при сильных устойчивых ветрах.

Щелевое крыло, создающее большую подъемную силу

Птицы, парящие над сушей, такие как кондоры, грифы, орлы и совы, имеют длинные широкие крылья с множеством щелей. Такое строение крыла позволяет сочетать маневренность с плавным скольжением, дает возможность птице кружить в небольших восходящих потоках тёплого воздуха, образующихся над землей.

Если обычные птицы - это планеры, у которых роль пропеллера выполняют перья на концах крыльев, то колибри можно сравнить с вертолетами. Эти удивительные создания могут подниматься вертикально вверх, зависать и даже летать «задним ходом»! Крылья их по своему строению отличаются от крыльев других птиц: они почти не гнутся, малоподвижны в запястном и локтевом суставах, но свободно вращаются в плечевом суставе. Во время зависания крылья движутся вперед, вниз, назад и вверх, описывая восьмерку, как будто эта крошечная птичка гребет веслами в воздухе.

Одним из важнейших факторов в аэронавтике является отношение площади крыльев к весу летательного аппарата; величины этого отношения у птиц могут служить уроком математики, преподанным нам природой. У более тяжелых птиц на единицу веса приходится относительно меньшая поверхность крыла по сравнению с легкими. Иными словами, чем меньше птица, тем относительно больше площадь ее крыльев по отношению к весу. Это можно объяснить тем, что крупные птицы приближаются по размерам к верхнему пределу. Они не могут стать еще больше, не жертвуя относительной величиной крыльев. Принято считать, что площадь крыльев у птицы приблизительно пропорциональна весу тела, взятому в степени 2/3.

Интересно, что птицы, у которых отношение площади крыльев к весу тела меньше обычного, такие как колибри, гагары и гуси, плохо приспособлены к парящему полету в отличие от таких, как, например, цапли и орлы, у которых это отношение больше обычного и которые могут превосходно парить. Создается впечатление, что в ходе эволюции возникали небольшие отклонения в росте крыльев и тела, смещавшие это соотношение в ту или иную сторону от изначального среднего в зависимости от экологической ниши.

К сожалению, я ненашел ни одной статьи по аэродинамики "для моделиста". Ни на форумах, ни в дневниках, ни в блогах- ни где нет нужной "выжимки" по этой теме. А вопросов возникает море, особенно у новичков, да и те, кто считает себя "уже не новичком", зачастую не утруждают себя изучением теории. Но мы это исправим!)))

Сразу скажу, сильно углубляться в эту тему не буду, иначе это получится, как минимум научный труд, с кучкой непонятных формул! И тем более я не стану пугать вас такими терминами, как "число Рейнольдса"- кому будет интересно- можете почитать на досуге.

Итак, договорились- только самое нужное для нас- моделистов.)))

Силы, действующие на самолет в полете.

В полете самолет подвергается влиянию многих сил, обусловленных наличием воздуха, но все их можно представить в виде четырех главных сил: силы тяжести, подъемной силы, силы тяги винта и силы сопротивления воздуха (лобовое сопротивление). Сила тяжести остается всегда постоянной, если не считать уменьшения ее по мере расхода горючего. Подъемная сила противодействует весу самолета и может быть больше или меньше веса, в зависимости от количества энергии, затрачиваемой на движение вперед. Силе тяги винта противодействует сила сопротивления воздуха (иначе лобовое сопротивление).

При прямолинейном и горизонтальном полете эти силы взаимно уравновешиваются: сила тяги винта равна силе сопротивления воздуха, подъемная сила равна весу самолета. Ни при каком ином соотношении этих четырех основных сил прямолинейный и горизонтальный полет невозможен.

Любое изменение любой из этих сил повлияет на характер полета самолета. Если бы подъемная сила, создаваемая крыльями, увеличилась по сравнению с силой тяжести, результатом оказался бы подъем самолета вверх. Наоборот, уменьшение подъемной силы против силы тяжести вызвало бы снижение самолета, т. е. потерю высоты.

Если равновесие сил не будет соблюдаться, то самолет будет искривлять траекторию полета в сторону преобладающей силы.

Про крыло.

Размах крыла - расстояние между плоскостями, параллельными плоскости симметрии крыла, и касающимися его крайних точек. Р. к. это важная геометрическая характеристика летательного аппарата, оказывающяя влияние на его аэродинамические и лётно-технические характеристики, а также является одним из основных габаритных размеров летательного аппарата.

Удлинение крыла - отношение размаха крыла к его средней аэродинамической хорде. Для непрямоугольного крыла удлинение = (квадрат размаха)/площадь. Это можно понять, если за основу возьмём прямоугольное крыло, формула будет проще: удлинение = размах/хорду. Т.е. если крылоимеет размах 10 метров а хорда = 1 метр, то удлинение будет = 10.

Чем больше удлинение- тем меньше индуктивное сопротивление крыла, связанное с перетеканием воздуха с нижней поверхности крыла на верхнюю через законцовку с образованием концевых вихрей. В первом приближении можно считать, что характерный размер такого вихря равен хорде- и с ростом размаха вихрь становится всё меньше и меньше по сравнению с размахом крыла. Естественно, чем меньше индуктивное сопротивление- тем меньше и общее сопротивление системы, тем выше аэродинамическое качество. Естественно, у конструкторов возникает соблазн сделать удлинение как можно больше. И тут начинаются проблемы: наряду с применением высоких удлинений конструкторам приходится увеличивать прочность и жёсткость крыла, что влечет за собой непропорциональное увеличение массы крыла.

С точки зрения аэродинамики наиболее выгодным будет такое крыло, которое обладает способностью создавать возможно большую подъемную силу при возможно меньшем лобовом сопротивлении. Для оценки аэродинамического совершенства крыла вводится понятие аэродинамического качества крыла.

Аэродинамическим качеством крыла называется отношение подъемной силы к силе лобового сопротивления крыла.

Наилучшей в аэродинамическом отношении является эллипсовидная форма, но такое крыло сложно в производстве, поэтому редко применяется. Прямоугольное крыло менее выгодно с точки зрения аэродинамики, но значительно проще в изготовлении. Трапециевидное крыло по аэродинамическим характеристикам лучше прямоугольного, но несколько сложнее в изготовлении.

Стреловидные и треугольные в плане крылья в аэродинамическом отношении на дозвуковых скоростях уступают трапециевидным и прямоугольным, но на околозвуковых и сверхзвуковых имеют значительные преимущества. Поэтому такие крылья применяются на самолетах, летающих на околозвуковых и сверхзвуковых скоростях.

Крыло эллиптической формы в плане обладает самым высоким аэродинамическим качеством- минимально возможным сопротивлением при максимальной подъемной силе. К сожалению, крыло такой формы применяется не часто из-за сложности конструкции, низкой технологичности и плохих срывных характеристик. Однако сопротивление на больших углах атаки крыльев другой формы в плане всегда оценивается по отношению к эллиптическому крылу. Наилучший пример применения крыла такого вида- английский истребитель "Спитфайер".

Крыло прямоугольной формы в плане имеет самое высокое сопротивление на больших углах атаки. Однако такое крыло, как правило, имеет простую конструкцию, технологично и имеет очень неплохие срывные характеристики.

Крыло трапецеидальной формы в плане по величине воздушного сопротивления приближается к эллиптическому. Широко применялось в конструкциях серийных самолетов. Технологичность ниже, чем у прямоугольного крыла. Получение приемлемых срывных характеристик также требует некоторых конструкторских ухищрений. Однако крыло трапецеидальной формы и правильной конструкции обеспечивает минимальную массу крыла при прочих равных условиях. Истребители Bf-109 ранних серий имели трапецевидное крыло с прямыми законцовками:

Крыло комбинированной формы в плане. Как правило, форма такого крыла в плане образуется несколькими трапециями. Эффективное проектирование такого крыла предполагает проведение многочисленных продувок, выигрыш в характеристиках составляет несколько процентов по сравнению с трапецеидальным крылом.

Стреловидность крыла — угол отклонения крыла от нормали к оси симметрии самолёта, в проекции на базовую плоскость самолета. При этом положительным считается направление к хвосту.Существует стреловидность по передней кромке крыла, по задней кромке и по линии четверти хорд.

Крыло обратной стреловидности (КОС) — крыло с отрицательной стреловидностью.

Преимущества:

Улучшается управляемость на малых полётных скоростях.
-Повышает аэродинамическую эффективность во всех областях лётных режимов.
-Компоновка с крылом обратной стреловидности оптимизирует распределения давления на крыло и переднее горизонтальное оперение

Недостатки:
-КОС особо подвержено аэродинамической дивергенции (потере статической устойчивости) при достижении определённых значений скорости и углов атаки.
-Требует конструкционных материалов и технологий, обеспечивающих достаточную жёсткость конструкции.

Су-47 "Беркут" с обратной стреловидностью:

Чехословацкий планер LET L-13 с обратной стреловидностью крыла:

— отношение веса летательного аппарата к площади несущей поверхности. Выражается в кг/м² (для моделей- гр/дм²).Величина нагрузки на крыло определяет взлетно-посадочную скорость летательного аппарата, его маневренность, и срывные характеристики.

По-простому, чем меньше нагрузка, тем меньшая скорость требуется для полета, следовательно тем меньше требуется мощности двигателя.

Средней аэродинамической хордой крыла (САХ) называется хорда такого прямоугольного крыла, которое имеет одинаковые с данным крылом площадь, величину полной аэродинамической силы и положение центра давления (ЦД) при равных углах атаки. Или проще- Хорда — отрезок прямой, соединяющей две наиболее удаленные друг от друга точки профиля.

Величина и координаты САХ для каждого самолета определяются в процессе проектирования и указываются в техническом описании.

Если величина и положение САХ данного самолета неизвестны, то их можно определить.

Для крыла, прямоугольного в плане, САХ равна хорде крыла.

Для трапециевидного крыла САХ определяется путем геометрического построения. Для этого крыло самолета вычерчивается в плане (и в определенном масштабе). На продолжении корневой хорды откладывается отрезок, равный по величине концевой хорде, а на продолжении концевой хорды (вперед) откладывается отрезок, равный корневой хорде. Концы отрезков соединяют прямой линией. Затем проводят среднюю линию крыла, соединяя прямой середины корневой и концевой хорд. Через точку пересечения этих двух линий и пройдет средняя аэродинамическая хорда (САХ).


Форма крыла в поперечном сечении называется профилем крыла . Профиль крыла оказывает сильнейшее влияние на все аэродинамические характеристики крыла на всех режимах полёта. Соответственно, подбор профиля крыла - важная и ответственная задача. Впрочем, в наше время подбором профиля крыла из существующих занимаются только самодельщики.

Профиль крыла - это одна из основных составляющих, формирующих летательный аппарат и самолет в частности, так как крыло все же его неотъемлемая часть. Совокупность некоторого количества профилей составляют целое крыло, причем по всему размаху крыла они могут быть разные. А от того, какие они будут, зависит назначение самолета и то, как он будет летать. Типов профилей достаточно много, но форма их принципиально всегда каплевидна. Этакая сильно вытянутая горизонтальная капля. Однако капля эта обычно далека от совершенства, потому что кривизна верхней и нижней поверхностей у разных типов разная, как впрочем и толщина самого профиля. Классика - это когда низ близок к плоскости, а верх выпуклый по определенному закону. Это так называемый несимметричный профиль, но есть и симметричные, когда верх и низ имеют одинаковую кривизну.

Разработка аэродинамических профилей проводилась практически с начала истории авиации, проводится она и сейчас.Делается это в специализированных учреждениях. Ярчайшим представителем такого рода учреждений в России является ЦАГИ - Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского. А в США - такие функции выполняет Исследовательский центр в Лэнгли (подразделение NASA).

THE END?

Продолжение следует.....

Термин «механизация крыла» на английском звучит как «high lift devices», что в дословном переводе – устройства для повышения подъемной силы. Именно это и является основным предназначением механизации крыла, а где находятся плоскости, относящиеся к механизации крыла и каким образом увеличивают подъемную силу, а также зачем это нужно - расскажет эта статья.

Механизация крыла – перечень устройств, которые устанавливаются на крыло самолета для изменения его характеристик на протяжении разных стадий полета. Основное предназначение крыла самолета – создание подъемной силы. Этот процесс зависит от нескольких параметров – скорости движения самолета, плотности воздуха, площади крыла и его коэффициента подъемной силы.

Механизация крыла непосредственно влияет на площадь крыла и на его коэффициент подъемной силы, а также косвенно на его скорость. Коэффициент подъемной силы зависит от кривизны крыла и его толщины. Соответственно можно сделать вывод, что механизация крыла кроме площади крыла еще и увеличивает его кривизну и толщину профиля.


На самом деле не совсем так, ведь увеличение толщины профиля связано с большими технологическими сложностями, не столь эффективно и больше ведет к увеличению лобового сопротивления, потому этот пункт необходимо отбросить, соответственно механизация крыла увеличивает его площадь и кривизну. Делается это с помощью подвижных частей (плоскостей), расположенных в определенных точках крыла. По месторасположению и функциям, механизация крыла делится на закрылки, предкрылки и спойлеры (интерсепторы).

Закрылки самолета. Основные виды.

Закрылки – первая из придуманных разновидностей механизации крыла, они же и наиболее эффективны. Они широко применялись еще до Второй Мировой войны, а на ее протяжении и после их конструкция была доработана и, также, были изобретены новые виды закрылок. Основными характеристиками, которые указывают на то, что это закрылок действительно является им – его расположение и манипуляции, которые с ним происходят. Закрылки всегда находятся на задней кромке крыла и всегда опускаются вниз, и, к тому же, могут выдвигаться назад. При опускании закрылка увеличивается кривизна крыла, при его выдвижении – площадь. А раз подъемная сила крыла прямо пропорциональна его площади и коэффициенту подъемной силы, то если обе величины увеличиваются, закрылок выполняет свою функцию наиболее эффективно. По своему устройству и манипуляциям закрылки делятся на:

  • простые закрылки (самый первый и самый простой вид закрылок)
  • щитовые закрылки
  • щелевые закрылки
  • закрылки Фаулера (наиболее эффективный и наиболее широко применяемый в гражданской авиации вид закрылок)

Каким образом функционируют все вышеперечисленные закрылки показано на схеме. Простой закрылок, как видно из схемы, просто отклоняемая вниз задняя кромка крыла. Таким образом, кривизна крыла увеличивается, однако область низкого давления над крылом уменьшается, потому простые закрылки менее эффективны, чем щитовые, верхняя кромка которых не отклоняется и область низкого давления не теряет в размерах.

Щелевой закрылок получил свое название по причине образуемой им щели после отклонения. Эта щель позволяет проходить воздушной струе к области низкого давления и направлена она таким образом, чтобы предотвращать срыв потока (процесс, во время которого величина подъемной силы резко падает), придавая ему дополнительную энергию.

Закрылок Фоулера выдвигается назад и вниз, чем увеличивает и площадь и кривизну крыла. Как правило, он сконструирован таким образом, чтобы при его выдвижении еще и создавалась щель, или две, или даже три. Соответственно он выполняет свою функцию наиболее эффективно и может давать прирост в подъемной силе до 100%.

Предкрылки. Основные функции.

Предкрылки – отклоняемые поверхности на передней кромке крыла. По своему строению и функциям они схожи с закрылками Фаулера – отклоняются вперед и вниз, увеличивая кривизну и немного площадь, образуют щель, для прохода воздушного потока к верхней кромке крыла, чем способствуют увеличению подъемной силы. Предкрылки, просто отклоняемые вниз, которые не создают щели называются отклоняемыми носками и только увеличивают кривизну крыла.

Спойлеры и их задачи.

Спойлеры. Перед рассмотрением спойлеров, следует заметить, что при создании дополнительной подъемной силы всеми вышеперечисленными устройствами создается дополнительное лобовое сопротивление, что ведет к понижению скорости. Но это происходит как следствие повышения подъемной силы, в то время как задача спойлеров – конкретно значительное повышение лобового сопротивления и прижимание самолета к земле после касания. Соответственно это единственное устройство механизации крыла, которое находится на верхней его поверхности и отклоняется вверх, чем и создается прижимная сила.

Анатомическое строение скелета птицы обусловлено эволюционными изменениями, которые оно претерпело в течение миллионов лет. Предки птиц, рептилии и ящеры, не умели летать. В освоении воздушного пространства им помогла перестройка строения костей, а также смена чешуи на оперение. Птичий скелет уникален, поскольку ему нет аналогов в животном мире. Из этой статьи вы узнаете все о его структуре, особенностях и свойствах.

Эволюционные преобразования

Когда предки современных птиц устремились в небо, их структура тела и скелета постепенно подстроилась под новый образ жизни. В частности, мышцы увеличились, а масса тела снизилась. Кости внутри они стали полыми или ячеистыми, что придало им легкости. Изогнутые пластины костной ткани увеличили прочность.

Скелет пернатых состоит из следующих элементов:

  • черепа и клюва;
  • позвоночника;
  • ребер, киля и грудины;
  • костей пояса передних конечностей;
  • костей передних конечностей;
  • костей пояса задних конечностей;
  • костей задних конечностей.

В отличие от древних рептилий и ящеров, зубы у птиц отсутствуют за ненадобностью. На смену им пришел клюв. А вместо чешуи на поверхности кожи появились перья, о которых можно прочесть в статье «Виды и строение перьев птицы».

Между внутренними органами птиц находятся воздушные мешочки. Они отвечают за работу дыхательной системы, создавая комфорт во время полета.

Структура птичьего черепа

Костная ткань черепа имеет монолитную структуру. Сросшиеся кости делают его прочным, что крайне важно, поскольку птица часто работает клювом: добывает пищу из коры деревьев, разбивает орехи. Череп и первый позвонок шеи тоже срослись.

Птицы имеют большие глазницы. Размер настолько внушителен, что глазная зона потеснила мозговую коробку.

Клюв состоит из надклювья (верху) и подклювья (внизу). Его структура – это роговое вещество. Надклювье подвижно, поскольку прикреплено к мозговой коробке по принципу шарнира.

Слуховые отверстия располагаются под глазницами в нижнем краю.

О структуре костей грудной клетки

Позвонки в зоне груди и ребер защищают сердечную мышцу и птичьи легкие. У быстро летающих пернатых имеется грудина больших размеров, которая вследствие эволюционных преобразований разрослась в киль. К ней крепятся основные летательные мышцы. Птицы, относящиеся к нелетающим, киля не имеют.

Плечевой пояс объединяет три косточки, образующие своеобразный треножник. Одна из трех ножек называется «воронья кость» — она упирается непосредственно в грудину. Другая, лопатка, располагается в области ребер. А третья срослась с ключицей, что образовало присущую для всех птиц «вилочку».

Лопатка с вороньей костью на месте скрепления образуют впадину. В этой области осуществляется поворот головки плечевой кости.

О строении крыльев

В строении крыльев птицы есть что-то общее со структурой рук человека. Речь идет о плечевой кости, а точнее об ее верхней части в области конечностей. В локтевом суставе она срослась с костями предплечья.

Вообще, большинство элементов кисти пернатых срослись между собой. Некоторые из них утратились вследствие эволюционных процессов. В этом и состоит главное анатомическое отличие крыльев и человеческих рук. А также в том, что птичье запястье состоит всего из двух основных костей и четырех фаланговых — пальцев.

https://youtu.be/n-3BJUqAx6A

Вес крыла пернатых намного меньше, чем масса конечностей других позвоночных с аналогичными габаритами. Причины тому – меньшее число элементов, отсутствие мышечной ткани и полая структура костей.

Роль мышц играют сухожилия и хорошо развитые мускулы грудины.

Внутри плечевой косточки крыла у пернатых находится воздушный мешочек.

В структуре тела птиц присутствуют 175 скелетных поперечных мышц. Их система парная, большинство из них расположено симметрично справа и слева. Контроль за мышцами сознательный, поэтому их сокращение произвольное.

Грудная и надкоракидная мышцы – это основные элементы мышечной системы пернатых. Первая больше второй, обе начинаются в зоне грудины. У кур, индеек и других одомашненных птиц такие мышцы именуются «белым мясом». Остальные относят к «черному».

Функция грудной мышцы: обеспечение движения птицы прямо и вверх за счет подтягивания крыла вниз. Что касается надкоракоидной мышцы, эта часть системы выполняет обратную функцию — оттягивает крыло вверх в противоположном направлении относительно грудной мышцы.

Гладкая мускулатура состоит из мышечных групп, расположенных в области мочеполовой, сосудистой, дыхательной и пищеварительной системах. Находятся они и в глазной зоне, обеспечивая птице фокусировку. Они функционируют непроизвольно, то есть без сознательного контроля.

Строение лап

Ноги в пернатом мире есть только у страуса. Конечности остальных птичек именуются лапами, так как они выполняют дополнительные функции: хватательную, держательную и другие.

Все птицы имеют по две лапы. Их строение характеризуется наличием бедренной кости, голени, коленного сустава и пальцев.

Малая и большая берцовые косточки у пернатых срослись, образовав тибиотарзус. После сращивания от малой берцовой косточки остался лишь небольшой выступающий рудимент, прилегающий к тибиотарзусу.

Стопы птиц

Стопа пернатых находится в голеностопном суставе. Она состоит из одной косточки, пальцев. А также цевки, которая образовалась от срастания элементов плюсны и нижних предплюсневых костей.

Птичьи стопы выглядят по-разному. Такое многообразие обусловлено различными условиями и образом жизни птиц. Важно и то, какой пище они отдают предпочтение.

У хищных охотников сильные когтистые лапы, служащие им орудием, с помощью которого они разрывают своих жертв. Пернатые, живущие на ветвях, имеют изящные лапки с длинными когтями и гибкими пальцами. Водоплавающих птиц природа наградила лапами с перепонками, помогающими хорошо держаться на воде.

Большинство пернатых имеют по четыре пальца, три из которых направлены вперед, а четвертый располагается сзади. Они ступают по земле исключительно пальцами и опираются пяткой. Цевка в процессе ходьбы не участвует.

Оставляйте свои комментарии к этой статье. Если она вам понравилась, делитесь информацией с друзьями в социальных сетях.