Как наследуются признаки сцепленные с половыми хромосомами. Сцепленное с полом наследование. Наследование сцепленных с полом признаков

Задача 1
Известно, что «трехшерстные» кошки - всегда самки. Это обусловлено тем, что гены черного и рыжего цвета шерсти аллельны и находятся в Х – хромосоме. Ни один из них не доминирует, а при сочетании рыжего и черного цвета формируются «трехшерстные» особи.
1. Какова вероятность получения в потомстве «трехшерстных» котят от скрещивания «трехшерстной» кошки с черным котом?
2. Какое потомство можно ожидать от скрещивания черного кота с рыжей кошкой?
Решение:
Интересное сочетание: гены черного и рыжего цвета не доминируют друг над другом, а в сочетании дают «трехшерстную» масть. Здесь наблюдается кодоминирование (взаимодействие генов). Возьмем: А – ген отвечающий за черный цвет, В – ген отвечающий за рыжий цвет; гены А и В равнозначны и аллельны (А=В), но эти гены находятся в Х – хромосоме. Поэтому мы обозначаем ген черного цвета Х A , ген рыжего цвета – Х В.

По условия пункта 1 скрещиваются трехшерстная кошка с черным котом.

(вероятные фенотипы)

По условиям пункта 2 скрещиваются рыжая кошка с черным котом:

(вероятные фенотипы)

При решении задачи использовали закон чистоты гамет и сцепленное с полом наследование. Взаимодействие генов: кодоминирование. Вид скрещивания: моногибридное.

У человека гемофилия передается как рецессивный сцепленный с Х – хромосомой признак

Задача 2
Классическая гемофилия передается как рецессивный сцепленный с Х – хромосомой признак.
1. Мужчина, больной гемофилией, жениться на женщине, не имеющей этого заболевания. У них рождаются нормальные дочери и сыновья, которые все вступают в брак с не страдающими гемофилией лицами. Обнаружится ли у внуков вновь гемофилия, и какова вероятность появления больных в семье дочери или сына?
2. Мужчина, больной гемофилией, вступает в брак с нормальной женщиной, отец которой страдал гемофилией.
Определите вероятность рождения в этой семье здоровых детей.
Решение:

По условиям пункта 1 ясен генотип больного мужчины: Х h . Так как женщина не страдает гемофилией, у нее обязательно должен быть доминантный ген «нормы» - Х H . Второй ген женщины также доминантный (Х H), в генотип женщины Х H Х H . Генотипы детей от такого брака:

Иначе говоря, все мальчики будут здоровы, гена гемофилии у них не будет, а все девочки будут гетерозиготными – в рецессиве у них будет ген гемофилии.
Если все мальчики в последствии вступят в брак со здоровыми в отношении гемофилии лицами (Х H Х H), гемофилия у внуков не проявится. Если дочери (Х H Х h) вступят в брак со здоровыми мужчинами (Х H Y), вероятность проявления гемофилии у внуков будет равна1/4, или 25%. По полу это будут мальчики:

По условиям пункта 2 в брак вступает больной мужчина (генотип X h Y) с женщиной, не страдающей болезнью. Следовательно, у женщины один ген обязательно «норма» – Х H . Но второй ген из этой пары у нее должен быть геном гемофилии – Х h , так как отец этой женщины страдал гемофилией, а женщина получает всегда одну Х – хромосому от матери, а вторую – от отца. Генотип женщины – Х H Х h . Вероятность рождения здоровых детей в этой семье равна 1/2. Девочки с генотипом Х h Х h погибают.

Задача 3
У человека классическая гемофилия наследуется как сцепленный с Х – хромосомой рецессивный признак. Альбинизм (отсутствие пигментации) обусловлен аутосомным рецессивным геном. У одной супружеской пары, родился сын с обеими аномалиями. Какова вероятность того, что у второго сына в этой семье проявится также обе аномалии одновременно?
Решение:

По условиям задачи оба родителя нормальны, следовательно, у них обязательно есть по доминантному гену из каждой пары Х H и А. Сын имеет обе аномалии, его генотип Х h Yаа. Х – хромосому с геном гемофилии он мог унаследовать только от матери. Один из генов альбинизма сын получил от матери, другой - от отца. Таким образом, генотип матери Х H Х h Аа, генотип отца Х H YАа. При таком браке вероятны генотипы детей:


Вероятность того, что следующий ребенок будет сыном, равна 1/2. Из числа сыновей лишь 1/8 может иметь одновременно обе аномалии. Для вычисления окончательного результата вероятности перемножаются: 1/2 х 1/8=1/16.

Гипертрихоз передается как сцепленный с Y - хромосомой признак

Задача 4
Гипертрихоз (вырастание волос на краю ушной раковины) передается через Y – хромосому, а полидактилия (шестипалость) – как доминантный аутосомный ген. В семье, где отец имел гипертрихоз, а мать – полидактилию, родилась нормальная в отношении обоих признаков дочь. Какова вероятность того, что следующий ребенок в этой семье будет также без обеих аномалий?
Решение:
В условиях задачи ген гипертрихоза обозначим звездочкой (*), находящейся в Y*– хромосоме, в Х – хромосоме нет гена аллельного гену гипертрихозу:

Так как отец имел гипертрихоз и был пятипалым, его генотип XY*aa. У матери не было гипертрихоза (и не могло быть, так как у нее нет Y - хромосомы), но она была шестипалой. Следовательно, у нее должен быть хотя бы один ген шестипалости – А. В этой семье родилась нормальная девочка. Ее генотип ХXаа. Один ген пятипалости она получила от отца, а второй ген пятипалости могла получить только от матери. На основе этого решаем, что мать была гетерозиготна по гену шестипалости. Ее генотип ХХАа. Вероятны генотипы детей:

Без обоих аномалий возможна лишь 1/4 детей, или 25%.

Наследование отсутствия потовых желез у человека как рецессивного сцепленного с полом признака

Задача 5
У человека отсутствие потовых желез проявляется как сцепленный с полом рецессивный признак. Глухота, то есть отсутствие слуха, обусловлено аутосомным рецессивным геном. У супружеской пары, нормальной по этим признакам, родился сын с обоими аномалиями. Определите возможные генотип родителей и вероятность рождения ребенка с таким же генотипом как первый. Дать цитологическое обоснование.
Решение:


ак как оба родителя были здоровы, значит ген отсутствия потовых желез является рецессивным и находиться в Х – хромосоме у женщины, т.к. она имеет две Х – хромосомы (в одной Х – хромосоме доминантный ген нормы, а в другой Х – хромосоме – рецессивный ген. Оба родителя гетерозиготы по гену глухоты, потому что у них родился больной сын

Вероятность рождения в этой семье больного ребенка с обоими аномалиями (ааХ b Y) - 1/16 или 0,0625%.

Цитологическое обоснование.
(Гены находятся в хромосомах: - Х-хромосома с генами, - У)

Взаимодействие генов: полное доминирование. Законы генетики, которые использовали при решении задачи: чистоты гамет, сцепленное с полом наследование, закон независимого наследования признаков.

Задача 6
У дрозофилы гены определяющие окраску глаз, локализованы в Х – хромосоме. Доминантный аллель W детерминирует красную окраску глаз, его рецессивный аллель w – белую. Скрещивали гомозиготную красноглазую самку с белоглазым самцом. В F 1 получили 48 потомков. От скрещивания их между собой получено 192 мухи в потомстве F 2 .
Определите:
1. Сколько женских особей было в F 1 ?
2. Сколько самцов в F 1 имело красную окраску глаз?
3. Сколько самок F 1 было красноглазых?
4. Сколько самцов в F 2 было белоглазых?
5. Составить схему скрещивания.
Решение:
Х W – ген определяющий красные глаза
Х w – ген определяющий белые глаза

1). Скрещивание гомозиготной красноглазой самки с белоглазым самцом:

Соотношение особей в потомстве 1:1. По фенотипу все особи красноглазые.
Поэтому:
1. Женских особей в F 1 было 48:2=24особи.
2. В F 1 все самцы (24особи) имели красные глаза.
3. Все самки в F 1 были красноглазыми (24 особи).

2). Скрещивание между собой гибридов F 1:


Поэтому: в F 2 белоглазых самцов было (192:4; х 2 = 96 особей).
Взаимодействие генов: полное доминирование. Законы генетики: закон чистоты гамет и сцепленное с полом наследование.

Задача 7
Селекционеры в некоторых случаях могут определить пол только что вылупившихся цыплят.
При каких генотипах родительских форм, возможно это сделать, если известно, что гены золотистого (коричневого) и серебристого (белого) оперения расположены в Х – хромосоме и ген золотистого оперения рецессивен по отношению к серебристому? Не забудьте, что у кур гетерогенным полом является женский!
Решение:
А – ген серебристого окрашивания
а – ген золотистого окрашивания

При скрещивании серебристой курочки с золотистым петушком курочки будут все золотистые, а петушки серебристые. Таким образом, петушки с серебристой окраской оперения будут иметь генотип Х A Х a , а курочки с золотистой окраской оперения - Х A Y.

Задача 8
Гипертрихоз наследуется как сцепленный с У – хромосомой признак, который проявляется лишь к 17 годам жизни. Одна из форм ретинита (ночная слепота) наследуется как рецессивный, сцепленный с Х – хромосомой признак. В семье, где женщина по обоим признакам здорова, а муж является обладателем только гипертрихоза, родился мальчик с ретинитом. Определить вероятность проявления у этого мальчика гипертрихоза. Определить вероятность рождения в этой семье детей без обоих аномалий и какого, они будут пола.
Решение:
X A – ген нормального ночного зрения;
Х a –ген ночной cлепоты;
Y* - ген гипертрихоза;
Y – ген нормы

Соотношение особей в потомстве 1:1:1:1
Вероятность проявления у первого сына гипертрихоза – 100%. Вероятность рождения здоровых детей – 50% (они будут только девочки).

Задача 9
У человека есть несколько форм стойкого рахита. Одна из его форм наследуется доминантно сцеплено с полом, вторая рецессивно – аутосомная. Какова вероятность рождения больных детей, если мать гетерозиготная по обоим формам рахита, а отец здоровый все его родственники здоровы?
Решение:
Х А – рахит (первая форма);
Х a – норма;
В – норма;
b – рахит (вторая форма).
Из условия задачи видно, что генотип женщины X А X a Bb, а мужчины - X a YBB – он гомозиготен по второй паре генов, т.к. все его родственники здоровы.

Вероятность больных детей 4/8 или 50%. Взаимодействие генов: полное доминирование. Законы генетики, которые использовали при решении задач: закон чистоты гамет, сцепленное с полом наследование, закон независимого комбинирования признаков.

Задача 10
У некоторых пород кур гены, определяющие белый цвет и полосатую окраску оперения, сцеплены с Х – хромосомой, полосатость доминирует над белой сплошной окраской. Гетерогаметный пол у кур женский. На птицеферме белых кур скрестили с полосатыми петухами и получили полосатое оперение как у петушков, так и у кур. Затем скрестили особи, полученных от первого скрещивания, между собой и получили 594 полосатых петушка и 607 полосатых и белых курочек. Определите генотипы родителей и потомков первого и второго поколения.
Решение:
Х А – полосатые;
Х a – белые
У кур гетерогаметный пол, у петухов гомогаметный. Если в F 1 все потомки независимо от пола полосатые, то петух гомозиготен и полосатость – доминантный признак. Во втором поколении наблюдается расщепление признака, поэтому петушок в F 2 будет гетерозиготен.
a)

Генетика пола является интересной темой и имеет важное значение в решении вопросов, связанных со здоровьем человека, а также его особенностей, передаваемых по наследству от предков. Люди занялись наукой в XIX веке, но с тех пор это одна из самых прогрессивных ее областей, которая продолжает открывать все новые и новые особенности организмов. Сначала проводились исследования, чтобы понять, как черты могут передаваться от родителей к их детям, и это привело к открытию концепции генной инженерии, которая имеет решающее значение для спасения жизни многих людей.

Что такое ДНК и где она находится?

ДНК расшифровывается как дезоксирибонуклеиновая кислота. Молекулу иногда называют «планом жизни» или «молекулой жизни», потому что она содержит всю информацию, необходимую организму для роста и выживания. ДНК представляет собой длинную скрученную спиральную структуру, похожую на винтовую лестницу. Две переплетенные между собой цепочки этой лестницы состоят из 4 химических оснований (нуклеотидов): аденина (A), тимина (T), гуанина (Г) и цитозина (Ц). Их строго определенная (комплементарная) попеременная последовательность и составляет генетический код человека. Когда ДНК реплицируется, молекула распаковывается, и каждая нить с ее основаниями становится шаблоном для образования другой идентичной молекулы. В геноме человека ДНК можно обнаружить в нескольких местах. В клетках она находится внутри ядра, а также в митохондриях. В вирусах и бактериях она может свободно плавать, так же как и размещаться в структурах, известных как плазмиды.

Гены и генетика

Ген - это цепочка ДНК, которая кодирует белок. Это то, что Фрэнсис Крик, один из первооткрывателей структуры ДНК, назвал «центральной догмой молекулярной биологии». Часть ДНК копируется в РНК (рибонуклеиновую кислоту), которая в отличие от нее умеет выбираться из ядра и переносить кодировку генов по всем частям клетки, в том числе и рибосомы - фабрики по производству белка. Считается, что молекулы РНК участвуют в кодировке, расшифровке и распространении генов.

Тем не менее существует несколько открытий, которые хотя не полностью опровергли эту идею, но, безусловно, дают ученым повод задуматься о том, что такое на самом деле ген. Например, часть догмы Крика была основана на идее, что «нежелательная ДНК» - это просто клеточный мусор. Однако оказалось, что эти регионы сильно законсервированы и выполняют некоторые функции, хотя сейчас об этом мало что известно. Некоторые ученые утверждают, что ген может выполнять роль в производстве РНК, имеющей много функций, одна из которых заключается в участии в производстве белков.

Генетику можно назвать наукой, изучающей способности и данные, которые могут передаваться по наследству от одного поколения к другому. Информация, закодированная в ДНК, имеет решающее значение для выявления свойств индивидуума. Та область, что занимается исследованиями факторов, влияющих на половую принадлежность, называется генетикой пола. Определение ее можно сформулировать и так: наблюдение за тем, как ведут себя женские и мужские гонады и их хромосомы при слиянии.

Генетический код - это информация в ДНК и РНК, от которой зависят аминокислотные последовательности в синтезе белка.

Роль хромосом

Человеческий организм содержит нитевидные ген-несущие образования — хромосомы, каждая из которых состоит из двух молекул ДНК. В них содержится полная программа наследственности (геном), включающая такие характеристики, как цвет глаз, волос и кожи. Так как весь геном не может поместиться в одной единственной молекуле ДНК, то он разбит на несколько пар. В каждой клетке человеческого организма (за исключением сперматозоидов и яйцеклеток) имеется 46 хромосом, 44 из которых являются парными (аутосомами). Две оставшиеся представлены половыми хромосомами. Они бывают двух видов: X, и Y. Если обе эти нуклеопротеидные структуры имеют форму буквы X (обозначается как 46, XX), то принадлежат женщине. Мужской пол — гетерогаметен (46, XY), то есть у него одна из двух хромосом выражена в виде Y.

Следует заметить, что в дополнение к своей роли по определению пола X-хромосома включает много другой информации, так как содержит в несколько раз больше генов, чем ее укороченная напарница.

Открытие Томаса Ханта Моргана

Конечно, об этом не всегда было известно. Первое указание на хромосомный механизм определения пола прослеживается в экспериментах, проведенных Томасом Хантом Морганом и его учениками в начале XX века. Исследуя партию плодовых мух дрозофил, у которых обычно красные глаза, он заметил некоторых испытуемых с окраской этого органа зрения в белый цвет. Все они являлись особями мужского пола.

Ученый уже знал, что самки мух имеют две X-хромосомы, в то время как у самцов присутствует только одна. Из этого он сделал вывод, что ген белого цвета находится на структуре именно этого типа. Самки мух редко встречается с такой окраской зрачка из-за того, что, вероятно, данная особенность угнетается более распространенной красной версией нуклеопротеидов. У самцов белый ген угнетать нечему, и если он достается особи по наследству от родителя, то проявляется, соответственно, и в потомстве. Данное открытие продемонстрировало, что X-хромосома является важным фактором в определении пола. Это также стало основой для дальнейшего использования плодовой мухи более поздними исследователями генетики. За свою хромосомную теорию наследственности и генетики пола Морган был удостоен Нобелевской премии по физиологии в 1933 году.

Митоз и мейоз

Репликация ДНК является процессом копирования молекулы в наших клетках. Это действие является необходимым этапом митоза и мейоза. Главные различия между ними состоят в том, половые клетки производятся через мейоз, в то время как все другие типы клеток тела производятся через митоз.

Митоз является способом размножения среди эукариотов (т. е. клеток, у которых имеется ядро). Он также входит в клеточный цикл и считается его заключительным звеном.

В митозе, чтобы клетка разделилась, она должна продублировать свою ДНК, чтобы создать идентичные копии и равномерно разделить их между двумя дочерними клетками. Примером является развитие многоклеточных организмов из одноклеточной зиготы (оплодотворенной яйцеклетки).

Мейоз необходим людям для воспроизводства половых клеток (спермы у мужчин и яйцеклеток у женщин). Он состоит из двух ядерных делений, приводящих к гаплоидным клеткам (N), которые содержат единичные копии хромосом, включающие в себя наследование пола. Генетика пола как раз занимается пониманием этого процесса. Гаплоидные клетки самки и самца могут сливаться вместе, создавая зиготу с уникальной комбинацией хромосом. Как указано выше, комбинации половых хромосом включают XX или XY.

Гаметы

Являются репродуктивными клетками, которые объединяются при оплодотворении, чтобы сформировать одну зиготу, содержащую генетический код обеих особей. Гаметы являются гаплоидными, то есть имеющими только один набор хромосом.

Половое размножение - это процесс, с помощью которого две особи производят потомство с генетическими признаками от обоих родителей. Воспроизводство предполагает объединение мужских и женских половых клеток и взаимодействие генов. Генетика пола исследует эти слияния, в результате чего образуется потомство со смесью наследственных данных.

Партеногенез - это тип бесполого размножения, который не требует оплодотворения женской яйцеклетки. Так размножаются растения и животные.

При бесполом размножении одна особь производит потомство, генетически идентичное самому себе. Общие формы такого размножения включают почкование, регенерацию и партеногенез.

Определение пола

Эта функция генетически запрограммирована X- и Y-хромосомами и происходит в момент образования семенников или яичников в эмбриональном развитии. Появление первичных половых признаков у мужчин регулируется экспрессией генов на Y-хромосоме. Формирование женских яичников происходит, если Y-хромосомы нет и эта ДНК не проявляется. В дополнение основных характеристик пола упомянутых выше (половых органов, включенных в воспроизводство), железы вырабатывают эстроген и тестостерон — ключевые гормоны для развития вторичных признаков.

Эти признаки развиваются в более позднем возрасте и часто подчеркивают принадлежность к тому или иному полу. Такими примерами у женщин служат: увеличение груди, широкие бедра, небольшое количество волос на лице и подкожно-жировая клетчатка. У мужчин это будет растительность на груди и лице, низкий голос и относительно крупный размер тела.

Биологический пол определяется по формированию внешних половых органов (т. е. пениса или влагалища) и гонад (т. е. яичек или яичников), присутствующих у человека. В отличие от этого, гендерная идентичность относится к самоидентификации в мозге человека. Большую часть эти два понятия идут рука об руку. Однако необычная генетика может привести к биологической половой неопределенности, расхождениям и путанице в гендерной идентичности.

Анеуплоидия

Отсутствие дизъюнкции при мейозе I или мейозе II может привести к анеуплоидии - аномальному состоянию, когда число хромосом организма отличается от заложенного в программе.

Результатом такого сбоя при мейозе I являются две гаметы с дополнительной хромосомой (N + 1) и две гаметы без хромосомы (N - 1).

При неправильном слиянии во время мейоза II создается одна гамета с дополнительной хромосомой (N + 1), одна без хромосомы (N - 1) и две с правильным количеством нуклеопротеидных структур (N).

Слияние аномальных половых клеток самцов и самок может создать анеуплоидные зиготы. Есть несколько генетических нарушений, которые связаны с этим дефектом. Примером могут послужить синдром Тернера и синдром Клайнфельтера, показывающие, как сбой в коде влияет на пол, первичные половые признаки и гендерную идентичность.

Синдром Тернера (Тернера-Шерешевского)

У пациентов с данным синдромом (ТС) генетически присутствует 45 хромосом, так как у них полностью или частично отсутствует половая хромосома. Такие нарушения происходят от спонтанного разделения во время мейоза.

Мозаицизм возникает у женщин с ТС, когда их ткани содержат по крайней мере 2 разные клеточные линии, которые отличаются генетически, но являются производными от одной зиготы. Это вызвано незапланированным слиянием отдельных хромосом при делении клеток. Примерами такого хаотичного образования могут служить 45, X/46, ХХ и 45x/46, XY наборы генов, но существуют и другие возможные вариации, изучаемые генетикой пола.

Женщины с ТС имеют несколько отличительных особенностей, таких как дисфункция яичников, маленький рост, крыловидная шея, слабый волосяной покров, широко расположенные соски, килевидная форма груди, пороки сердца и коричневые пятна на коже. Наиболее очевидными характеристиками, которые приводят к диагностике, являются низкий рост и бесплодие.

Синдром Клайнфельтера

Лица с этим нарушением имеют набор генов 47, XXY. Вторая X-хромосома часто инактивируется. Это означает, что она больше не функционирует для экспрессии своих генов. Синдром Клайнфельтера развивается при спонтанном разделении при мейозе.

Мутация может произойти по материнской линии (в гамете матери), либо по отцовской (в гамете отца), чтобы создать 47, XXY зиготу. На отцовскую линию приходится 53% случаев, а на мать - 34%. Остальные нарушения встречаются при мейозе II.

Синдром Клайнфельтера обычно диагностируют в период полового созревания. Как правило, мужчины с этой особенностью могут вести нормальную жизнь. Они имеют несколько отличительных характеристик, таких как стерильность, высокий рост, длинные руки и ноги, женственное телосложение, отсутствие волос на груди, атрофию яичек, гипогонадизм, остеопороз, снижение агрессии, языковой дефицит и развитие груди. Низкий уровень тестостерона определяет недостаток развития мужских вторичных половых характеристик.

На первый взгляд типы определения пола выглядят достаточно просто. Однако при ближайшем рассмотрении становится ясно, что анеуплоидия всегда возможна и может сделать неоднозначной и сложной половую идентификацию. Возможно, дальнейшее понимание биологии половой дифференциации поможет нашему обществу осознать, что не все так легко и однозначно в этом вопросе.

Мальчики, девочки и король Генрих XIII

Ребенок может унаследовать только X-хромосому от своей матери, но он может унаследовать либо Х, либо Y-хромосому от своего отца. Это происходит из-за оплодотворения женской яйцеклетки спермой мужчины.

Интересно, что король Англии Генрих VIII, желавший наследника престола мужского пола, был возмущен первыми двумя женами, которые не смогли подарить ему сына. Поскольку пол определяется отцом, а не матерью, «неспособность» родить ребенка мужского пола была на самом деле неудачей Генриха.

Закон сегрегации Менделя

Факторы, регулирующие наследственность, были открыты монахом по имени Грегор Мендель в 1860-х годах. Один из этих принципов теперь называется теперь его именем.

Этот принцип наследственности в генетике пола утверждает, что черты передаются потомству в одинаковой мере от обоих партнеров. Они никак не связаны между собой и существуют отдельно друг от друга. Каждая из особенностей создается при участии генов с обеих сторон, и доминирующий код влияет на внешность ребенка, а тот, что оказывается более слабым, просто переходит в спящее состояние. Он никуда не девается и может неожиданно проявиться в последующих поколениях. Кроме того, по наследству передается не полный набор идентичных черт, а только некоторые из них.

Полигенное наследование - это наследование таких признаков, как цвет кожи, цвет глаз и цвет волос, которые определяются более чем одним геном, выпадают от любого из родителей спонтанно, словно при игре в рулетку. Причем при распределении признаков в следующем поколении и активные и пассивные гены оказываются в абсолютно равном положении.

Мутация гена - любое изменение, которое происходит в ДНК. Эти изменения могут быть полезными, оказывать некоторое влияние или серьезно вредить организму.

Генетика пола: интересные факты

Такие милые особенности, как ямочки и веснушки, вызваны мутациями генов. Эти черты могут быть унаследованы или приобретены.

Аномалии половых хромосом происходят в результате изменений привнесенных мутагенами или проблемами, которые происходят во время мейоза.

Ученые считают, что генетический набор людей закодирован таким образом, что он не позволяет им жить более 120 лет. Это было доказано путем проведения исследований на клетках, где было установлено, что они имеют ограниченное время для деления.

Некоторые женщины имеют тетрахроматизм. Эта генетическая мутация, которая позволяет им видеть около 100 миллионов различных цветов по сравнению со средним показателем в 1 миллион, видимым нормальным человеком.

Наши гены удивительно похожи на гены других форм жизни. Например, мы разделяем 98% общих генов с шимпанзе, 90% с мышами, 85% с рыбой-зеброй, 21% с глистами и 7% с простыми бактериями, такими как E.Coli (кишечная палочка).

Каждый из 180 детей рождается с хромосомной аномалией. Результатом наиболее распространенной патологии является синдром Дауна.

Проводится генетическое исследование африканской этнической группы йоруба. У них необычайно высокая рождаемость близнецов.

Всего лишь 2% генома человека содержит информацию для образования белков. Все остальные являются так называемыми «некодирующими регионами», потому что до сих пор неизвестно, какова их конкретная функция.

Как утверждает генетика пола, хромосомные нарушения затрагивают около 7 из 1000 живорожденных детей и составляют около половины всех самопроизвольных абортов в первом триместре беременности.

Если вы распутаете все хромосомы всех ваших клеток и поместите ДНК от начала до конца, нити протянутся от Земли до Луны примерно 6000 раз.

Мы до сих пор не знаем функций более 80% нашей ДНК.

Люди на 99,9% генетически идентичны и только на 0,1% мы отличаемся друг от друга.

Вы уже изучали особенности строения и образования половых клеток. Представители какого пола образуют сперматозоиды, а какого — яйцеклетки? вспомните, какие преимущества дает наличие у живых организмов разных по строению половых клеток и, соответственно, двух полов.

Способы определения пола

У живых организмов существует несколько способов определения того, какого пола особь разовьется из зиготы. Будущий пол может определяться внешними условиями (если личинка червя бонеллия находится на дне океана, то из нее развивается самка, а если на хоботке самки — самец), плоидностью организма (у пчел и муравьев гаплоидные особи — самцы, а диплоидные — самки) или специальными половыми хромосомами, как у дрозофил (остальные хромосомы в этом случае называют аутосомами) (рис. 32.1).

Половые хромосомы

Если пол организма определяется с помощью половых хромосом, то таких хромосом одна или две. Если половых хромосом две, то они, как правило, отличаются по размеру (одна большая, а вторая маленькая). А особи разного пола имеют или две большие хромосомы (гомогаметный пол), или одну большую и одну маленькую (гетерогаметный пол). Обозначают такие хромосомы буквами латинского алфавита.

У разных организмов гомогаметным может быть как женский, так и мужской пол. Например, у млекопитающих и мух гомогаметным является женский пол (его представители имеют по две Х-хромосомы, генотип — XX), а гетерогаметным — мужской (его представители имеют одну X- и одну У-хромосому, генотип — ХУ). У большинства птиц и бабочек, наоборот, гомогаметным полом является мужской (его представители имеют по две одинаковые хромосомы, но обозначаются они уже другой латинской буквой — Z, генотип — ZZ), а гетерогаметным — женский (генотип — ZW) (рис. 32.2).

Гены, сцепленные с полом

Гены, расположенные в половых хромосомах, называются генами, сцепленными с полом. Примерами таких генов являются гены окраски глаз в Х-хромосоме дрозофилы, гены дальтонизма и гемофилии в Х-хромосоме человека и гены гипертрихоза и ихтиоза в У-хромосоме человека.

Особенностью генов, которые сцеплены с полом, является то, что они могут находиться в состоянии гемизиготы. Гемизигота — это диплоидная особь, имеющая только один аллель данного гена. Это состояние возникает потому, что особи одного из полов имеют две разные половые хромосомы. Например, у котов в Х-хромосоме генов много, а в У-хромосоме мало. Из-за этого даже рецессивные аллели генов Х-хромосомы будут проявляться в фенотипе, потому что нет второй Х-хромосомы с доминантным аллелем.

Наследование генов половых хромосом

Рассмотрим особенности наследования генов, сцепленных с полом, на примере млекопитающих. С генами, которые расположены в У-хромосоме самцов, все просто. Они передаются только самцу и у самок проявляться не могут. Они всегда находятся в состоянии гемизиготы, потому что в норме эта хромосома в ядре клетки только одна.


Наследование генов, расположенных на Х-хромосомах, более сложное. в организме самок они ведут себя как обычные гены аутосом (неполовых хромосом), так как Х-хромосом здесь две. А в организме самцов эти гены проявляют себя в состоянии гемизиготы. Поэтому признаки, которые определяются рецессивными аллелями таких генов, проявляются у самцов всегда. А получают они их от своих матерей (рис. 32.3).

У некоторых животных половые хромосомы представлены только одним типом, при этом один из полов имеет только одну половую хромосому, а второй — две одинаковые. Так, среди клопов, ящериц и некоторых птиц встречаются виды с генотипами мужского и женского пола — ZZ и Z0, X0 и XX соответственно (цифра 0 записи означает отсутствие второй пары хромосомы).

У утконоса пять пар половых хромосом. в его гаметах содержится или пять X-хромосом, или пять /-хромосом. Эти хромосомы образуют один комплекс и при делении клетки всегда расходятся вместе.


У общего предка однопроходных и других млекопитающих, жившего около 165 млн лет назад, половых хромосом еще не было.

У живых организмов существует несколько способов определения будущего пола. Один из самых распространенных — с помощью половых хромосом. У млекопитающих набор половых хромосом самцов — ХУ, самок — XX. Гены, расположенные в половых хромосомах, называются генами, сцепленными с полом. Признаки, определяемые рецессивными аллелями генов X-хромосомы, проявляются у самцов, но передаются через самок. Гены, расположенные в У-хромосоме, передаются напрямую по линии самцов.

Проверьте свои знания

1. Какими способами определяется будущий пол живых организмов? 2. Что такое гомогаметный пол? Приведите примеры. 3. Что такое гетерогаметный пол? Приведите примеры. 4. в каких случаях организм может быть гемизиготой? 5. Сравните механизм определения пола у бабочек и млекопитающих. 6. Решите задачу. Ген, определяющий окраску шерсти у кошек, расположен в X-хромосоме. Один из его аллелей определяет черную окраску, а другой — рыжую. Если организм гетерозиготный по этому гену, то его окраска будет черепаховой (часть волосков имеет черную окраску, а часть — рыжую). Какой цвет шерсти будет у потомков от скрещивания рыжего кота и черной кошки? 7. Решите задачу. Ген, определяющий окраску шерсти у кошек, расположен в X-хромосоме. Один из его аллелей определяет черную окраску, а другой — рыжую. Если организм гетерозиготный по этому гену, то его окраска будет черепаховой (часть волосков имеет черную окраску, а часть — рыжую). Какой цвет шерсти будет у потомков от скрещивания черного кота и черепаховой кошки? 8*. Сравните наследование генов, расположенных на X- и У-хромосомах.

Это материал учебника

Генетика пола .

Человека издавна интересовал механизм определения пола. Впервые Мендель попытался его объяснить, он показал, что пол наследуется как всякий другой признак, при этом наблюдается расщепление 1:1.

Пол - это совокупность признаков и свойств организма, которые обеспечивают воспроизведение потомства и передачу наследственной информации. Половой диморфизм присущ многим организмам.

Все признаки, отличающие мужской и женский организм делят на:

- первичные - это половые органы - яичники или семенники;

- вторичные - это морфологические и физиологические признаки и свойства (тип волосяного покрова, тембр голоса, брачная окраска у животных).

Пол является таким же признаком , как и другие, и этот признак генетически детерминирован. Анализируя соотношение особей в популяции по полу, можно отметить, что расщепление составляет приблизительно 1:1 , у собак на 100 особей приходится 56 особей мужского пола, у кур - 49, у человека 51-52 мальчика.

Такое соотношение наводит на мысль о том, что пол контролируется парой генов , и одна из особей должна быть гомозиготной, а другая гетерозиготной, то есть, соотношение особей в потомстве аналогично расщеплению при анализирующем скрещивании. Доказательством служит то, что двуяйцевые близнецы могут быть и разнополые, а однояйцевые только одного пола.

Выделяют несколько типов определения пола:

а) прогамный - определение пола происходит до слияния гамет (некоторые черви, так как у них формируется 2 типа ооцитов с разной скоростью роста, затем из крупных развиваются самки, а из мелких - самцы;

б) эпигамный - пол определяется после оплодотворения под влиянием внешних условий, например у червя бонелии личинки превращаются в самцов, только в том случае, если они прикрепляются к самкам;

в) сингамный - пол определяется в момент оплодотворения , к этому типу относится хромосомное определение.

Хромосомное определение пола связано с наличием половых хромосом . Если пол содержит одинаковые половые хромосомы, то он будет называться гомогаметным , а если разные - то гетерогаметным .

  1. у дрозофилы и человека гомогаметный (XX) - женский пол, гетерогаметный (XY) - мужской пол;
  2. у шелкопряда, птиц, бабочек, рептилий, земноводных гетерогаметный (XY) - женский пол; гомогаметный (XX) -мужской пол
  3. у моли - гомогаметный (XX) - мужской пол, гетерогаметный - (XО) - женский пол;
  4. у некоторых организмов половые хромосомы не выражены, их нет у некоторых рыб, амфибий, рептилий;
  5. у перепончатокрылых (пчёлы, осы, муравьи) из оплодотворённых яиц развиваются самки (матка выкармливается из оплодотворённого яйца маточным молочком, а рабочие пчёлы - пыльцой), из неоплодотворённых яиц развиваются самцы (у них гаметы развиваются в результате митоза, но они гаплоидны, так как самцы гаплоидны).

Определение пола при не расхождении половых хромосом.

Обычно в случае не расхождения половых хромосом образуются гаметы (XX) и (О) или (XY) и (О).

Зигота (YО) сразу гибнет, а особи с генотипами (XXX, XXY, XО); жизнеспособны, но их пол зависит от наличия Y хромосомы при любом количестве X хромосом, однако в любом случае эти особи будут бесплодные, имеющие физическую и умственную отсталость.

Наследование признаков, сцеплённых с полом .

Открытие закономерностей наследования, сцеплённых с полом связано с Томасом Морганом. При скрещивании белоглазого самца с красноглазой самкой потомство оказалось красноглазым, а во втором поколении наблюдалось расщепление по фенотипу в зависимости от пола.

На основании этих опытов был сделан вывод о том, что гены, контролирующие окраску, глаз находятся в половых хромосомах. Характер наследования зависит:

а) от того типа хромосомного определения пола ;

б) от того, каким геном контролируется данный признак, доминантным или рецессивным.

Наследование, сцеплённое с полом - это наследование, при котором, гены, обуславливающие определённые признаки локализованы в половых хромосомах.

Учитывая, то, что, у гомогаметного пола половые хромосомы одинаковые, а у гетерогаметного - разные, наследование признаков, сцеплённых с полом, будет отличаться от наследования признаков, гены которых расположены в аутосомах.

Особенности наследования признаков, сцеплённых с полом :

  • - признаки наследуются крисс-кросс ;
  • - у гетерогаметного пола проявляются не только доминантные , но и рецессивные признаки, причём проявление рецессивных признаков обусловлено гемизиготным состоянием.

Тип наследования (аутосомное или сцеплённое с полом) устанавливается с помощью реципрокных скрещиваний.

При аутосомном наследовании потомки будут единообразны . Если же признак сцеплён с полом , в гибридном поколении происходит распределение особей по фенотипу в зависимости от пола.

В соответствии с типом хромосомного определения пола различают 2 типа реципрокных скрещиваний:

1) при гетерогаметности мужского пола : наследование окраски глаз у дрозофилы. Ген определяющий окраску глаз локализован в X-хромосоме, ген красноглазия Ẁ + , а ген белоглазия Ẁ.

Если ген находится в генотипе в одиночном состоянии, то это состояние будет называтьсягемизиготное состояние, то есть, ген локализован в X-хромосоме, он не имеет пары у гетерогаметных организмов, так как у гетерозиготных организмов Y-хромосома, как правило, намного меньше X-хромосомы и не содержит аллелей многих генов, расположенных в X-хромосоме.

(У человека Y-хромосома передаётся от отца к сыну, в ней находится ген, который необходим для дифференцировки семенников, а семенники в свою очередь вырабатывают гормоны, стимулирующие развитие мужской половой системы, если же Y-хромосомы нет в генотипе, тогда на 6 неделе внутриутробного развития у зародыша развиваются яичники, а яичники в свою очередь вырабатывают гормоны, стимулирующие развитие женской половой системы. Позднее вступают в действие многие другие гены, которые влияют на развитие пола, но они находятся в аутосомах.

На ранних стадиях внутриутробного развития у самок млекопитающих транскрибируются обе X-хромосомы, но затем во всех клетках, кроме тех, из которых разовьются яичники, происходит инактивация одной X-хромосомы. Такая неактивная (конденсированная, сильно спирализованная, то есть, такая хромосома находится в гетерохроматиновом состоянии) хромосома видна под микроскопом в ядрах соматических клеток женщины в виде особой структуры, называемой тельцем Барра . Таким образом, в женских и мужских клетках содержится по одной активной X-хромосоме., что определяет одинаковый уровень проявления генов X-хромосомы в женском и мужском организме, то есть, возникает механизм компенсации различий в дозе генов в X-хромосомах самцов и самок в виде инактивации одной X-хромосомы у самок).

Признаки, контролируемые гемизиготными генами, несмотря на то, что они не имеют аллельной пары, проявляются фенотипически: так как в Y-хромосоме нет соответствующих аллелей, поэтому при скрещивании самки с красными глазами с белоглазым самцом получим следующий результат:

В F 1 наблюдается расщепление по полу 1:1, но по фенотипу все гибриды будут единообразны.

В F 2 наблюдается расщепление по фенотипу 3:1, однако наследование окраски глаз зависит от пола, поэтому все самки будут красноглазые, а у самцов половина особей будет иметь красные глаза, а половина - белые.

При обратном скрещивании, когда самка имеет белые глаза, а самец красноглазый наследование признаков происходит крисс-кросс или перекрёстное наследование, то есть от отца признак передаётся дочерям, а от матери - сыновьям:

Расщепление по полу и по фенотипу совпадает 1:1.

2) при гетерогаметности женского пола: наследование окраски оперения у кур (ген В контролирует рябую окраску оперения), поэтому при скрещивании чёрной курицы и рябого петуха получим следующие результаты:

Расщепление по фенотипу 3:1, а расщепление по полу 1:1.

При обратном скрещивании, когда курица рябая, а петух чёрный, также как и в первом случае наблюдаем наследование крисс-кросс:

У человека также известны признаки, сцеплённые с полом:

  • Ряд доминантных признаков, сцеплённых с полом, например, дефект эмали зубов, недостаточность фосфора в костях, приводящая к рахиту, дефект эритроцитов отец передаёт дочерям, сыновья же будут здоровы , в то же время гетерозиготная по этим признакам мать передаёт их половине дочерей и половине сыновей.
  • Ряд рецессивных признаков, сцеплённых с полом, например, гемофилия, дальтонизм проявляются только у мужчин, а носителями являются гетерозиготные по этим признакам женщины (Н - нормальная свёртываемость крови, h - несвёртываемость):

Р: X H X h × X H Y

Носительница здоровый

Гемофилии.

G: X H X h X H Y

F 1: X H X h X H Y X H X H X h Y

Носит. здоров. здоров. гемофилик

Как видим, все дочери здоровы, но половина дочерей являются носительницами гена гемофилии, половина сыновей здоровы, а половина - гемофилики. Фенотипически гемофилия у дочерей будет наблюдаться в том случае, если отец гемофилик, а мать - носительница.

У большинства живых организмов Y - хромосома инертна и не несёт активных генов, но всё же встречаются некоторые заболевания, гены которых расположены в Y - хромосоме, например, ихтиоз (кожа уплотняется, покрывается чешуями, утолщается), образование перепонок между вторым и третьим пальцем стопы и некоторые другие заболевания, однако эти заболевания проявляются только у мужчин, и передаются от отца к сыну, мать в передаче чанных заболеваний участия не принимает. Это голандрическое наследование.

К наследованию признаков, сцеплённых с полом, относится наследование черепаховой окраски у котов.

Черепаховую окраску могут иметь только кошки, ген В - чёрная окраска, ген b - рыжая окраска, поэтому:

X b X b - рыжая кошка;

X B Y - чёрный кот;

X B X B - чёрная кошка;

X b Y - рыжий кот;

X B X b - черепаховая кошка.

Для того, чтобы в фенотипе проявилась черепаховая окраска необходимо, чтобы в генотипе находился ген (B) и ген (b).

Введение. 2

1. Генетика пола. 2

2.1. Генетические механизмы формирования пола. 3

2.2. Наследование признаков, сцепленных с полом. 7

2.3. Наследование признаков, контролируемых полом. 12

3. Сцепленное наследование признаков. 13

3.1. Хромосомная теория наследственности. 14

3.2. Механизм сцепления. 15

3.3. Кроссинговер. 16

3.4. Группы сцепления и карты хромосом у человека. 21

4. Заключение. 22

5. Библиографический список. 23

Введение.

Генетика является одной из самых прогрессивных наук естествознания. Ее достижения изменили естественнонаучное и во многом философское понимание явлений жизни. Роль генетики для практики селекции и медицины очень велика. Значение генетики для медицины будет возрастать с каждым годом, ибо генетика касается самых сокровенных сторон биологии и физиологии человека. Благодаря генетике, ее знаниям, разрабатываются методы лечения ряда наследственных заболеваний, таких, как фенилкетонурия, сахарный диабет и другие. Здсь медико-генетическая работа призвана облегчить страдания людей от действия дефектных генов, полученных ими от родителей. Внедряются в практику приемы медико-генетического консультирования и прентальной диагностики, что позволяет предупредить развитие наследственных заболеваний.

1. Генетика пола.

Пол - совокупность признаков, по которым производится специфическое разделение особей или клеток, основанное на морфологических и физиологических особенностях, позволяющее осуществлять в процессе полового размножения комбинирование в потомках наследственных задатков родителей.

Морфологические и физиологические признаки, по которым производится специфическое разделение особей, называется половым.

Признаки, связанные с формированием и функционированием половых клеток, называется первичными половыми признаками. Это гонады (яичники или семенники), их выводные протоки, добавочные железы полового аппарата, копулятивные органы. Все другие признаки, по которым один пол отличается од другого, получили название вторичных половых признаков. К ним относят: характер волосяного покрова, наличие и развитие молочных желез, строение скелета, тип развития подкожной жировой клетчатки, строение трубчатых костей и др.

2.1. Генетические механизмы формирования пола.

Начало изучению генотипического определения пола было положено открытием американскими цитологами у насекомых различия в форме, а иногда и в числе хромосом у особей разного пола (Мак-Кланг, 1906, Уилсон, 1906) и классическими опытами немецкого генетика Корренса по скрещиванию однодомного и двудомного видов брионии. Уилсон обнаружил, что у клопа Lydaeus turucus самки имеют 7 пар хромосом, у самцов же 6 пар одинаковых с самкой хромосом, а в седьмой паре одна хромосома такая же, как соответствующая хромосома самки, а другая маленькая.

Пара хромосом, которые у самца и самки разные, получила название идио, или гетерохромосомы, или половые хромосомы. У самки две одинаковые половые хромосомы, обозначаемые как Х-хромосомы, у самца одна Х-хромосома, другая - Y-хромосома. Остальные хромосомы одинаковые у самца и у самки, были названы аутосомами. Таким образом, хромосомная формула у самки названного клопа запишется 12A + XX, у самца 2A + XY. У ряда других организмов, хотя и существует в принципе тот же аппарат для определения пола, однако гетерозиготны в отношении реализаторов пола не мужские, а женские организмы. Особи мужского пола имеют две одинаковые половые хромосомы ZZ, а особи женского пола - ZO или ZW. ZZ-ZW тип определения пола наблюдается у бабочек, птиц, ZZ-ZO - ящериц, некоторых птиц.

Совершенно другой механизм определения пола, называемый гаплодиплоидный, широко распространен у пчел и муравьев. У этих организмов нет половых хромосом: самки - это диплоидные особи, а самцы (трутни) - гаплоидные. Самки развиваются из оплодотворенныз яиц, а из неоплодотворенных развиваются трутни.

Человек в отношении определения пола относится к типу XX-XY. При гаметогенезе наблюдается типичное менделевское расщепление по половым хромосомам. каждая яйцеклетка содержит одну Х-хромосому, а другая половина - одну Y-хромосому. Пол потомка зависит от того, какой спермий оплодотворит яйцеклетку. Пол с генотипом ХХ называют гомогаметным, так как у него образуются одинаковые гаметы, содержащие только Х-хромосомы, а пол с генотипом XY-гетерогаметным, так как половина гамет содержит Х-, а половина - Y-хромосому. У человека генотипический пол данного индивидума определяют, изучая неделящиеся клетки. Одна Х-хромосома всегда оказывается в активном состоянии и имеет обычный вид. Другая, если она имеется, бывает в покоящемся состоянии в виде плотного темно-окрашенного тельца, называемого тельцем Барра (факультативный гетерохроматин). Число телец Барра всегда на единицу меньше числа наличных х-хромосом, т.е. в мужском организме их нет вовсе, у женщин (ХХ) - одно. У человека Y-хромосома является генетически инертной, так как в ней очень мало генов. Однако влияние Y-хромосомы на детерминацию пола у человека очень сильное. Хромосомная структура мужчины 44A+XY и женщины 44A+XX такая же, как и у дрозофины, однако у человека особь кариотипом 44A+XD оказалась женщиной, а особь 44A+XXY мужчиной. В обоих случаях они проявляли дефекты развития, но все же пол определялся наличием или отсутствием y-хромосомы. Люди генотипа XXX2A представляют собой бесплодную женщину, с генотипом XXXY2A - бесплодных умственно отстающих мужчин. Такие генотипы возникают в результате нерасхождения половых хромосом, что приводит к нарушению развития (например, синдром Клайнфельтера (XXY). Нерасхождение хромосом изучаются как в мейозе, так и в нитозе. Нерасхождение может быть следствием физического сцепления Х-хромосом, в таком случае нерасхождение имеет место в 100% случаев.

Рис.1. Вид половых хромосом человека в метафазе митоза.

Всем млекопитающим мужского пола, включая человека, свойственен так называемый H-Y антиген, находящийся на поверхности клеток, несущих Y-хромосому. Единственной функцией его считается дифференцировка гонад. Вторичные половые признаки развиваются под влиянием стероидных гормонов, вырабатываемых гонадами. Развитие мужских вторичных половых признаков контролирует тестостерон, воздействующий на все клетки организма, включая клетки гонад. Мутация всего одного Х-хромосомы, кодирующего белок-рецептор тестостерона, приводит к синдрому тестикумерной фелинизации особей XY. Клетки-мутанты не чувствительны в действию тестостерона, в результате чего взрослый организм приобретает черты, характерные для женского пола. При этом внутренние половые органы оказываются недоразвитыми и такие особи полностью стерильные. Таким образом, в определении и дифференцировке пола млекопитающих и человека взаимодействуют хромосомный и генный механизмы.

Несмотря на то, что женщины имеют две Х-хромосомы, а мужчины - только одну, экспрессия генов Х-хромосомы происходит на одном и том же уровне у обоих полов. Это объясняется тем, что у женщин в каждой клетке полностью инактивирована одна Х-хромосома (тельце Барра), о чем уже было сказано выше. Х-хромосома инактивируется на ранней стадии эмбрионального развития, соответствующей времени имплантации. при этом в разных клетках отцовская и материнская Х-хромосомы выключаются случайно. Состояние инактивации данной Х-хромосомы наследуется в ряду клеточных делений. Таким образом, женские особи, гетерозиготные по генам половых хромосом, представляют собой мозаики (пример, черепаховые кошки).

Таким образом, пол человека представляет собой менделирующий признак, наследуемый по принципу обратного (анализирующего) скрещивания. Гетерозиготой оказывается гетерогаметный пол (XY), который скрещивается с рецессивной гомозиготой, представленной гомогаметным полом (XX). В результате в природе обнаруживается наследственная дифференцировка организмов на мужской и женский пол и устойчивое сокращение во всех поколениях количественного равенства полов.

2.2. Наследование признаков, сцепленных с полом.

Морган и его сотрудники заметили, что наследо­вание окраски глаз у дрозофилы зависит от пола родительских особей, несущих альтернативные аллели. Красная окраска глаз доминирует над белой. При скрещивании красноглазого самца с белоглазой самкой в F 1 , получали равное число красноглазых самок и белоглазых самцов. Однако при скрещивании белоглазого самца с красноглазой самкой в F 1 были получены в равном числе красно­глазые самцы и самки. При скрещива­нии этих мух F 1 , между собой были получены красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной белоглазой самки. Тот факт, что у самцов частота про­явления рецессивного признака была выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в Х - хромосоме, а Y - хромосома лишена гена окраски глаз. Чтобы проверить эту гипотезу, Морган скрестил исходного белоглазого самца с красноглазой сам­кой из F 1 . В потомстве были по­лучены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только Х - хромосома несет ген окраски глаз. В Y - хромосоме соответствующего локуса вообще нет. Это явле­ние известно под названием наследования, сцеплен­ного с полом.

Гены, находящиеся в половых хромосомах, называют сцепленными с полом . В Х-хромосоме имеется участок, для которого в Y-хромосоме нет гомолога. Поэтому у особей мужского пола признаки, определяемые генами этого участка, проявляются даже в том случае, если они рецессивны. Эта особая форма сцепления позволяет объяснить наследование признаков, сцепленных с полом.

При локализации признаков как в аутосоме, так и в Х- b Y-хромосоме наблюдается полное сцепление с полом.

У человека около 60 генов наследуются в связи с Х-хромосомой, в том числе гемофелия, дальтонизм (цветовая слепота), мускульная дистрофия, потемнение эмали зубов, одна из форм агаммглобулинемии и другие. Наследование таких признаков отклоняется от закономерностей, установленных Г.Менделем. Х-хромосома закономерно переходит от одного пола к другому, при этом дочь наследует Х-хромосому отца, а сын Х-хромосому матери. Наследование, при котором сыновья наследуют признак матери, а дочери - признак отца получило, название крисс-кросс (или крест-накрест).

Известны нарушения цветового зрения, так называемая цветовая слепота. В основе появления этих дефектов зрения лежит действие ряда генов. Красно-зеленая слепота обычно называется дальтонизмом. Еще задолго до появления генетики в конце XVIII и в XIX в. было установлено, что цветовая слепота наследуется согласно вполне закономерным правилам. Так, если женщина, страдающая цветовой слепотой, выходит замуж за мужчину с нормальным зрением, то у их детей наблюдается очень своеобразная картина перекрестного наследования. Все дочери от такого брака получат признак отца, т.е. они имеют нормальное зрение, а все сыновья, получая признак матери, страдают цветовой слепотой (а-дальтонизм, сцепленный с Х-хромосомой)

Р Х а Х а х Х а y

F 1 Х а Х а, Х а y

В том же случае, когда наоборот, отец является дальтоником, а мать имеет нормальное зрение, все дети оказываются нормальными. В отдельных браках, где мать и отец обладают нормальным зрением, половина сыновей может оказаться пораженными цветовой слепотой. В основном наличие цветовой слепоты чаще встречается у мужчин. Э.Вильсон объяснил наследование этого признака, предположив, что он локализовал в Х-хромосоме и что у человека гетерогаметным (XY) является мужской пол. Становится вполне понятным, что в браке гомозиготной нормальной женщины (Х а Х а) с мужчиной дальтоником (Х а y) все дети рождаются нормальными. Однако при этом, все дочери становятся скрытыми носителями дальтонизма, что может проявиться в последующих поколениях.