Погружение свай дизель молотом. Ударная технология погружения забивных свай. Техника безопасности при производстве свайных работ

Наша компания проводит работы по забивке и погружению свай малыми и средними объемами на высокоскоростном оборудовании. Вы можете узнать подробнее когда оправдано применение машин для погружения свай . Звоните нам и мы вам поможем с погружением свай. А сейчас речь пойдёт о дизель-молотах, которые используются на сваебойной технике, в том числе и нашей сваебойной технике.

Виды дизель молотов для погружения свай

Классификация ударного оборудования, используемого в свайных работах, выполняется исходя из его конструкционных особенностей, согласно которым выделяют дизель молоты трубчатого и штангового типа.

В качестве направляющего элемента ударной части молота, в конструкциях штангового типа используются две вертикальные штанги, тогда как в трубчатых агрегатах - неподвижно зафиксированная труба.

Также сваебойные молоты делятся на группы исходя из массы ударной части. Выделяют молоты с бойком весом:

  • до 0,6 тонн - легкие;
  • до 1,8 тон - средние;
  • свыше 2.5 тонн - тяжелые.

Рассмотрим каждый вид дизель молотов подробнее.

1. Штанговые.

Устройства штангового типа вы можете увидеть на изображении 1.1:

Рис. 1.1

Конструкция штангового дизель молота состоит из таких основных элементов:

  • Поршневой блок, установленный на шарнирную подпорку;
  • Две вертикальные направляющие штанги;
  • Система подачи топливной смеси;
  • Устройство для фиксации свайного столба - "кошка".

Поршневой блок представляет собою монолитную конструкцию, отлитую внутри корпуса молота. В него входит сам поршень и компрессионные кольца, шланг для подачи топлива, форсунка для распыления топливной смеси и насос, приводящий ее в действие.

Поршневой блок неподвижно зафиксирован на шарнирной подпорке, из нижней стенки которой выходят две направляющие штанги.

Рис. 1.2

Штанги, для более жесткой фиксации, в верхней части соединены траверсой. По направляющим штангам во время работы движется ударная часть молота, на нижней стенке корпуса которой расположена камера для сгорания топливной смеси.

2. Трубчатые.

Конструкции трубчатого типа представлены на изображении 1.3.


Рис. 1.3

Строение всех молотов трубчатого типа полностью унифицировано, они проектируется по устоявшимся стандартам и обладают идентичными конструкционными особенностями.

Состоит трубчатый дизель молот из следующих частей:

  • "Кошки" - для захвата и крепления свайного столба, кошка обладает автоматическим фиксирующе-сбрасывающим механизмом;
  • Ударного бойка - он представлен поршнем, оборудованным компрессионными кольцами;
  • Шабота - ударной поверхности, с которой соприкасается боек в процессе работы молота;
  • Рабочего цилиндра, внутри которого детонация топлива;
  • Систем смазки и охлаждения;
  • Направляющей трубы из высокопрочной стали.

Рис. 1.4

В отличие от молотов штангового типа, трубчатые конструкции обладают системой принудительного водяного охлаждения, что дает возможность непрерывной эксплуатации данных устройств, тогда как в работе штанговых молотов должны присутствовать регулярные перерывы после каждого часа забивки свай , необходимые для естественного охлаждения элементов конструкции.

Вы можете сами выбрать нужную сваебойную установку в разделе нашей техники.

Технические характеристики дизель молотов

Трубчатые дизель молоты по праву считаются наиболее совершенными и эффективными конструкциями. При одинаковой массе бойка они способны выполнять забивку более тяжелых свай (двух-трех кратная разница в весе свайного столба).

Молот состоит из следующих частей:

  • цилиндр (или штанги)
  • баба (ударная часть, боек), движущаяся внутри цилиндра
  • шабот (нижняя часть молота, к которой крепится наголовник)

Сферические выемки на бабе и шаботе при соприкосновении образуют камеру сгорания. В нее методом впрыска подается дизельное топливо, которое, при ударе бабы по шаботу, под создающимся в камере сгорания высоким давлением, самовоспламеняется и подбрасывает бабу в верхнюю точку. После чего падение бабы возобновляется.

Таким образом, молот производит серию ударов по свае, погружая ее в грунт, наглядно процесс можно увидеть на видео :

К недостаткам штанговых конструкций также относится низкая долговечность (эксплуатационный ресурс, в среднем, почти в два раза меньше, чем срок службы трубчатых молотов).

Штанговые дизель молоты, из-за ограниченной энергии удара, которая составляет 27-30% от потенциальной энергии, которую может развивать ударный боек, применяются исключительно для погружения свайных столбов в слабую низкоплотную почву.

Наиболее распространенные штанговые дизель молоты с массой ударного бойка в 2500 и 3000 килограмм, такие конструкции способны выдавать энергию удара до 43 кДж, при этом количество ударов в минуту ограничено на уровне 50-55. Эта техника есть у нас : Сваебойная техника .


Рис. 1.5

Дизель молоты трубчатого типа используются для погружения железобетонных забивных свай в любые виды грунтов. При необходимости работать в условиях вечномерзлой почвы для забивки свай используются предварительно пробуренный лидерные скважины .

Температурный диапазон работы трубчатых сваебойных молотов варьируется в пределах от -45 до +45 градусов. Если свайные работы выполняются при температуре менее 25 градусов, требуется дополнительный подогрев поршневого блока перед запуском молота.

Вес ударного бойка в трубчатых дизель молотах может составлять 1.25, 1.8, 2.5, 3.5 и 5 тонн. Боек, в зависимости от веса, может развивать силу удара от 40 до 165 кДж. Максимальное количество ударов молота за одну минуту работы - 42.

Технология погружения свай дизель молотом

Дизель-молот - специфическое сваебойное оборудование, которое навешивается на мачту сваебойной машины , то есть является навесным сваебойным механизмом. Принцип действия сваебойного молота заключается в нанесении ударов по свае силой собственного веса.

Особенности технологии погружения свай будут разниться в зависимости от типа используемого оборудования.

Рассмотрим основные этапы забивки свай штанговым дизель молотом:

  • По завершению строповки и фиксации сваи "кошка", зафиксированная на лебедке копрова, опускается вниз и сцепляется с ударной частью молота;
  • Кошка и боек поднимается с помощью лебедки по направляющим в максимальное верхнее положение;
  • Оператор активирует рычаг сброса и ударная часть, под собственным весом, опускается вниз к шарнирному оголовку, закрепленному на свайном столбе;
  • В процессе опускания бойка находящийся внутри цилиндра воздух сжимается и повышает свою температуру (до 650 градусов);
  • Когда ударный боек соприкасается с шарнирным оголовком сваи, внутрь цилиндра форсункой нагнетается топливо, которое смешивается с сжатым воздухом;
  • При ударе происходит самовоспламенение топливной смеси, освободившийся в результате детонации газ отталкивает ударный боек в верхнее исходное положение;
  • В процессе поднятия скорость движения под весом бойка уменьшается, и ударная часть опускается обратно к шарнирному оголовку, закрепленному на свайном столбе. Процесс повторяется заново до тех пор, пока оператор копра не отключит топливный насос.

Рис. 1.6

Последовательность работы трубчатого молота при забивке свай следующая:

  • Поршневая часть стыкуется с кошкой и поднимается в верхнее положение с помощью лебедки копра;
  • Выполняется автоматическая расстыковка поршня и кошки и ударная часть опускается по направляющей трубе;
  • В процессе падения поршня активируется насос, который нагнетает топливо в специальное углубление, расположенное на верхней стенке корпуса шабота;
  • При дальнейшем опускании поршня происходит сжатие воздуха внутри трубы молота;
  • Когда поршень ударяет по шаботу топливная смесь детонирует, половина энергии при этом идет на погружение свайного столба, еще часть - на подбрасывание поршня в исходное положение.

Рис. 1.7

Погружение свайного столба выполняется в результате воздействий двух видов энергии - ударной (исходящей от массы бойка) и газодинамической, которая высвобождается в момент детонации топливной смеси.

Наша компания поставит технику на объект

Компания "Богатырь" производит свайные работы в строгом соответствии с требованиями СНиП и другими нормативными документами.

Технология забивки свай полностью расписывается в специально разрабатываемых на время свайных работ, документах: ППР (проект производства работ), технологическая карта , и т.д., в ходе работ ведется сводная ведомость забивки свай. Таким образом, - процесс в полном смысле является производственным и за его строгим исполнением, особенно во время забивки свай, следит лицо, ответственное за проведение свайных работ.

Забивные сваи изготавливают на поверхности земли, а затем погружают в грунт в вертикальном или наклонном положении. Существует несколько методов погружения забивных свай.

Ударный метод. Этот метод основан на использовании энергии удара, под действием которого свая нижним концом (заостренной частью) внедряется в грунт. По мере погружения она смещает частицы грунта в стороны, частично вниз и частично вверх. В результате погружения свая вытесняет объем грунта и таким образом дополнительно уплотняется грунтовое основание. Ударную нагрузку на оголовок сваи создают спец. механизмами – молотами разных типов, основным из которых является дизельный. Как правило, обычно применяются штанговые и трубчатые дизель-молоты.

Процесс погружения сваи складывается из следующих операций:

    подтягивание и подъем сваи с одновременным заведением ее головной части в гнездо наголовника в нижней части молота;

    установка сваи в направляющих в месте забивки;

    забивка сваи сначала несколькими легкими ударами с последующим увеличением силы ударов до максимальной. При отклонении положения сваи от вертикали более чем на 1 % сваю выправляют подпорками, стяжками и т.п., или извлекают и забивают вновь;

    передвижение копровой установки и срезание сваи по заданной отметке.

Забивка свай ведется до получения заданного проектом отказа.

Отказ - глубина погружения сваи от одного удара. Отказ измеряют с точностью до 1 мм. Осадку от одного удара в конце забивки сваи измерить трудно, поэтому отказ определяют как среднее значение при серии ударов, называемых залогом.

При погружении свай дизель-молотами и паровоздушными молотами одиночного действия залог принимается равным 10 ударам, при погружении свай молотами двойного действия и вибропогружателями залог принимают равным числу ударов за 1 мин забивки.

Если средний отказ в 3-х последующих залогах не превышает расчетного, то процесс забивки свай можно считать законченным. Сваи, не давшие контрольного отказа после перерыва с длительностью в 3-4 дня подвергают контрольной забивке, если глубина погружения свай не достигла 85% проектной, а на протяжении 3-х последних залогов получен расчетный отказ, то надо выявить причины этого явления, согласовать с проектной организацией.

Вибрационный метод. Метод основан на значительном уменьшении при вибрации коэффициента внутреннего трения в грунте и силы трения боковых поверхностей свай. Благодаря этому при вибрации доя погружения свай требуется в десятки раз меньше усилий, чем при забивке. При этом наблюдается частичное уплотнение грунта. зона уплотнения составляет 1.5-3 диаметра сваи в зависимости от вида грунта и его плотности. При вибрационном способе сваю погружают с помощью спец.механизмов – вибропогружателей. Вибропогружатель подвешивают к мачте сваи погружающей установки и соединяют со сваей наголовником. Действие вибропогр-ля основано на принципе, при котором горизонтальные центробежные силы взаимокомпенсируются, а вертикальные суммируются.

Амплитуда колебаний и масса вибросистемы (вибропогруж-ль, наголовник, свая)т должны обеспечить разрушение структуры грунта с необратимыми деформациями. При вибрационном погружении в глину или тяжелый суглинок под нижним концом сваи образуется глинистая подушка, которая вызывает значительное снижение несущей способности сваи. Чтобы устранить это явление сваю погружают ударным способом на длину 15-20 см. для погружения легких свай (до 3-х тонн) и металлического шпунта в грунты неоказываемового большого лобового сопротивления под острием сваи принимают высококачественные вибропогружатели с подрессорной пригрузкой.

Вибрационный метод наиболее эффективен при несвязных, водонасыщенных грунтах. применение вибрационного метода для погружения свай в маловлажние плотные грунты возможно только при устройстве лидирующих скважин.

Виброударный метод погружения свай - универсальный. Вибромолот совершает удары по наголовнику сваи, когда зазор между ударником вибровозбудителя и сваей меньше амплитуды колебаний возбудителя.

Масса ударной части вибромолота для ЖБ свай должно быть не менее 50% от массы сваи и составляет около 650-1350 кг.

Способ вдавливания (статический метод) коротких свай (до 6 м) более безопасен для окружающих сооружений, чем вибрационный и виброударный способы. Однако в плотных грунтах перед вдавливанием необходимо бурить лидирующие скважины небольшого диаметра.

Вибровдавливание. При вибровдавливании свая погружается от комбинированных воздействий вибрации и статической нагрузки. Этот способ более эффективен, чем простое вдавливание.

Вибровдавливающая установка состоит из 2-х рам, на заднее раме находятся электрогенераторы, работающие от трактора и 2-хбарабанная лебедка. На передней раме располагается направляющая стрела с вибропогружателем. Когда вибровдавливающая установка займет рабочее положение вибропогружатель опускают вниз, наголовником соединяется свая и поднимают на место забивки.

Метод вибровдавливания исключает разрушение свай и эффективен при погружении свай длиной до 6 м.

Завинчивание. Винтовые сваи изготавливают стальными или комбинированными: нижняя винтовая часть - стальная; верхняя - железобетонная. Такие сваи применяются в качестве фундаментов и анкеров при строительстве мачт, линий электропередачи, радиосвязи и т.п.

Рабочие операции при погружении сваи методом завинчивания аналогичны операциям, выполненным при погружении свай методом забивки или вибрации, только вместо установки и снятия наголовника здесь надевают оболочки.

Метод с подмывкой грунта. С подмывом под давление воды не менее 0,5 МПа могут погружаться сваи-стойки, если нет опасности осадки близлежащих сооружений. Расположение подмывных трубок бывает центральным или боковым. Центральное расположение более предпочтительно, поскольку при боковом расположении подмывные трубки часто повреждаются и заполняются грунтом. В связи с размывом грунта под пятой сваи за 1... 1,5 м до проектной отметки подмыв прекращают, дальше сваю погружают без подмыва.

Электроосмос используют при погружении свай в плотные глинистые грунты. После кратковременного воздействия постоянного тока у стенок погружаемой сваи-катода собирается грунтовая вода, понижаются силы трения между сваей и грунтом

а - вибрационный; б - виброударный; в - вдавливание; г – вибровдавливание;

д - завинчивание; е - подмыв; ж - электроосмос.

Свайные молоты применяют механические (подвесные), паровоздушные и дизельные.

Механические молоты , которыми сваи забивают за счет энергии свободного их падения, имеют небольшую производительность. Их применяют редко и для погружения свай небольших размеров.

Паровоздушные молоты широко используют для забивки железобетонных и стальных свай, в том числе для забивки тяжелых свай в плотные связные грунты. Работают такие молоты при помощи пара или сжатого воздуха; по своей конструкции и принципу действия их подразделяют на молоты одиночного и двойного действия.

Молоты одиночного действия бывают с ручным, с полуавтоматическим и с автоматическим управлением.

Молоты с ручным управлением просты и надежны в работе, но имеют малую частоту ударов (до 25 в мин). Вес ударной части в молотах одиночного действия достигает 8000 кг.

Молоты двойного действия более производительны и работают автоматически, но имеют меньший вес ударной части, что ограничивает их применение для забивки тяжелых свай. Существуют паровоздушные молоты двойного действия, приспособленные для работы под водой.

В зимних условиях в паровоздушных молотах лучше применять не сжатый воздух, а пар, так как при пневматическом способе в механизмах конденсируется и замерзает вода.

Дизель-молоты находят широкое применение главным образом для забивки относительно небольших свай и подразделяются на штанговые, трубчатые и с воздушным буфером. В штанговых молотах ударной частью служит цилиндр, а в трубчатых - поршень. Вес ударной части от 400 до 2500 кг.

К недостаткам дизель-молотов относятся:

Низкий коэффициент полезного действия - до 60% кинетической энергии тратится на сжатие воздуха вцилиндре;

Неполноценность работы в начальный период и при слабых грунтах - при небольшом сопротивлении погружению не происходит достаточного сжатия горючей смеси и поэтому прекращается работа молота;

Неполноценна работа при низких температурах воздуха.

Общая организация свайных работ на мостостроительном объекте зависит от выбора механизмов для погружения свай. Выбор сваебойных агрегатов, в том числе свайных молотов, зависит от свойств грунтов, а также от веса сваи, ее конструкции, требуемой глубины погружения и несущей способности.

Вес ударной части молота одиночного действия (включая дизель-молот) должен быть больше веса сваи при ее длине более 12 м. При длине сваи менее 12 м вес ударной части молота должен превосходить вес сваи более чем в 1,25 раза - при погружении в грунты средней плотности.

В различных грунтовых условиях эффект погружения свай может зависеть как от энергии удара молота, так и от частоты его ударов. Только при оптимальном соотношении всех параметров сваебойного агрегата, соответствующем конкретным грунтовым условиям, можно успешно погружать сваи в грунт.


Погружение сваи молотами в песчаные грунты, полностью насыщенные водой, в некоторых случаях оказывается затруднительным. Увеличение веса ударной части молота не дает при этом эффекта. Интенсивнее вытесняется вода и, следовательно, увеличивается скорость погружения сваи также подмыв грунта, при котором возникает поток воды вдоль стен свай, уменьшается трение и открывается путь для выхода свободной воды из пор грунта. При водонасыщенных песчаных грунтах предпочтительнее вибропогружение свай и забивка молотами с большой частотой ударов и с применением подмыва.

При погружении свай в глинистые грунты происходит их уплотнение, нарушаются структурные связи и как следствие часть связной воды переходит в свободную, т.е. грунт разжижается (явление тиксотропин). Это явление облегчает погружение свай, причем происходит оно интенсивнее при относительно большей частоте ударов молота. Кроме того, возможность успешного погружения свай в глинистые грунты зависит от многих

других причин и главным образом от консистенции и влажности грунта. Большие силы сцепления глинистых грунтов со сваей резко снижают эффект погружения; в водонасыщенных глинистых грунтах погружение затруднено даже при небольшой их плотности; в плотных глинистых грунтах сопротивление погружению возрастает. Подмыв свай в глинистых грунтах редко дает положительные результаты. В плотные глинистые

грунты сваи лучше погружать свайными молотами с большим весом ударной части – паровоздушными молотами одиночного действия. Для облегчения погружения в глину трубчатых свай их иногда погружают с открытым концом и с извлечением грунта из их полости.

В супеси или в слабые суглинки сваи можно успешно погружать свайными молотами с применением в необходимых случаях подмыва.

Сваи необходимо забивать в грунт до тех пор, пока величина погружения от одного удара не достигнет расчетного значения, называемого отказом (среднее арифметическое значение осадки от нескольких ударов).

Расчетный отказ косвенно характеризует несущую способность сваи по грунту, т.е. является динамическим эквивалентом предельной статической нагрузки на сваю. Первоначальный отказ, полученный после завершения забивки сваи, обычно не является истинным, так как после некоторого перерыва величина отказа изменяется. В маловлажных песчаных грунтах отказ возрастает (сопротивление уменьшается), а в глинистых грунтах уменьшается.

Производительность свайных работ зависит как от правильного выбора сваебойного агрегата, так и от вспомогательных операций по забивке, которые занимают до 80% времени. Для свайных работ применяют копры или краны. Стреловые и портальные краны снабжают направляющими стрелами и другим вспомогательным оборудованием. Для направления свай при погружении, особенно для направления наклонных свай, применяют также направляющие приспособления в виде каркасов из инвентарных элементов УИКМ или переносных устройств, устанавливаемых на распорных креплениях котлованов.

Копры и краны, применяемые для забивки свай, должны обладать маневренностью и позволять быстро перемещать их, а также проводить все вспомогательные работы. Копры должны быть легкими, достаточно жесткими, просты в сборке и по возможности универсальны. Размеры копра и его конструкцию подбирают в зависимости от размеров свай, условий их погружения, а также от применяемого сваебойного агрегата. Если копры предназначены для забивки относительно коротких и легких свай или шпунта, то их можно изготовлять на строительстве. Деревянные сборно-разборные копры можно изготовлять высотой до 15 м; находят применение деревянные копры с двумя стрелами, позволяющими забивать одновременно по две сваи. Чаще применяют металлические инвентарные копры. Среди них копры для дизель-молотов, выполненные из различных прокатных профилей и труб и снабженные колесами для передвижения по рельсам. Для забивки тяжелых длинных свай, в том числе и наклонных, применяют универсальные копры, перемещаемые по рельсам. Таким копрам можно придавать наклон в пределах до 5:1 с помощью длинных винтов, установленных между вышкой и платформой. Большинство универсальных копров полноповоротные в горизонтальной плоскости, а на платформе обычно размещены паровой котел, лебедка и механизмы поворота. При перестановке тележки и установке на рельсы другого направления станину копра поднимают домкратами, укрепленными под платформой. На местности, покрытой водой, сваи целесообразно забивать с помощью плавучих копров, которые располагают на плашкоутах из металлических понтонов (обычно на инвентарных понтонах КС) и закрепляют якорями.

Наряду с копрами в мостостроении для забивки свай широко используют различные краны: стреловые стационарные деррик-краны, стреловые на гусеничном или автомобильном ходу и портальные. На местности, покрытой водой, для этой цели применимы плавучие краны.

Применение крана для забивки свай особенно целесообразно, если его используют на всех работах по сооружению опоры, т.е. для забивки шпунта, извлечения грунта и бетонирования тела опоры, и, кроме того, для монтажа пролетных строений. Так универсальные краны, имеющие сменное оборудование, позволяют забивать шпунт и сваи, разрабатывать и извлекать грунт из котлованов или опускных колодцев, подавать бетонную смесь, поднимать скользящую опалубку или подавать под сборку опалубочные щиты, собирать опоры из блоков, монтировать сборные металлические и железобетонные пролетные строения и т.д.

Краны, используемые для забивки свай, снабжают направляющими стрелами. Находят применение короткие направляющие, подвешенные к крану, которые по мере забивки сваи периодически опускают с таким расчетом, чтобы молот при работе не выходил за их пределы. Чаще применяют длинные направляющие, подвешенные к стреле крана, в нижней части жестко присоединенные к корпусу крана при помощи соединения, позволяющего изменять наклон направляющей и вылет стрелы крана.

В тех случаях, когда проектные отметки голов свай находятся ниже уровня воды, применяют свайные молоты, способные работать под водой, или используют так называемые “подбабки”, устанавливаемые между концом сваи и молотом. Подбабки представляют собой отрезки свай или соответствующие инвентарные конструкции.

Последовательность погружения свай зависит от формы фундамента, свойств грунта. количества свай и применяемого оборудования. При небольшом количестве рядов сваи забивают последовательно по рядам, начиная от крайнего. В многорядных фундаментах применяют спиральную последовательность, начиная от центральных свай во избежание переуплотнения грунта, препятствующего погружению последующих свай.

1. Вид продукции . Погруженный в грунт элемент заданной несущей способности. Погружение ведется серией вертикальных ударов по голове сваи.

2. Состав процесса. Доставка свай на объект; установка свай на погружающий агрегат; погружение свай в грунт до проектного «отказа».

3. Вход в процесс . Приняты предыдущие работы (площадка), погружены и испытаны пробные сваи (для определения фактической длины сваи и времени ее погружения).

Испытания проводят на полностью подготовленной площадке или на отметке дна проектного котлована до начала массового изготовления (или завоза) свай. При динамических испытаниях свая проектных размеров погружается ударами молота до расчетного «отказа». При статических испытаниях проектная свая нагружается реальной вертикальной нагрузкой (грузами). При положительных результатах испытаний дается заявка на изготовление проектных свай в заданном количестве (на объект). При отрицательных результатах проектанты изменяют длину или сечение сваи и проводят новые испытания.

4. Материалы . Сваи железобетонные заводского изготовления. Сечение свай – квадратное, 300x300 мм. Используются также трубчатые сваи диаметром 400–800 мм. Длина свай составляет на объектах ПГС 5–16 м. При этом сваи длиной 12–16 м могут быть составными из двух элементов, соединяемыми в процессе погружения рабочими стыками (рис. 3.4).

При возведении опор мостов используются трубчатые сваи-оболочки диаметром 1200–6000 мм. Из отдельных секций длиной 6,0 м в процессе погружения составляется свая длиной 20,0–40,0 м.

Сваи деревянные могут использоваться лишь ниже уровня грунтовых вод (в воде дерево не гниет). На таких сваях из лиственницы построено большинство старых зданий в Санкт-Петербурге, включая соборы и дворцы. В настоящее время при строительстве промышленных и гражданских сооружений (ПГС) деревянные сваи практически не применяются.

Стальные сваи – шпунт. Стальные пластины специального профиля, шириной 200–400 мм и длиной 6–12 м. Служат для устройства подпорных стен, крепления стенок глубоких котлованов (стр. 31, рис. 2.4).

4.1. Техника . Для погружения свай в грунт используется сваепогружающая установка (СПУ). СПУ представляет комплект двух агрегатов – копра и погружателя.

Копер включает (рис. 3.5):

Базовую машину (1) – трактор, экскаватор, автомобиль, мобильный мост;
- направляющую стрелу – для удержания свай в нужном положении; для навески погружающего механизма (погружателя – 3);
- вспомогательное оборудование – лебедки для подъема сваи и погружателя; системы наведения стрелы на точку; стальные сварные или литые наголовники с набором амортизирующих прокладок (твердые породы дерева, армированная резина) (рис. 3.6).

Системы наведения обеспечивают: постановку сваи на точку; выверку по вертикали; коррекцию положения сваи в процессе погружения. Они обеспечивают:

Наклон стрелы на определенный угол в двух плоскостях;
- поступательное перемещение стрелы «влево–вправо», «вперед–назад».

Следует отметить, что не все копры имеют полный набор этих движений, большинство имеют лишь движения наклона стрелы, что осложняет наведение и снижает точность погружения свай.

Погружатель – механизм, который силовым импульсом внедряет сваю в грунт (рис. 3.8, 3.9). Он определяет вид технологии.

Рациональные области применения различных копров:

Тракторные установки – погружение свай длиной 5–12 м при рядовом расположении свай (трактор перемещается вдоль ряда), производительность 20–30 шт/смену;

Экскаваторные (или на базе стреловых кранов) – погружение свай длиной 6–16 м при кустовом расположении свай в фундаментах под колонны; с одной стоянки поворотом стрелы погружает все сваи в одном кусте и переходит к другому кусту свай. Производительность 15–25 шт/смену;

Мостовые СПУ (рельсовые или гусеничные) в комплекте с молотом – погружение свай длиной 5–10 м при рядовом расположении свай или полем (рис. 3.7). Имеют высокую производительность 40–70 свай в смену. На небольшие расстояния (от дома на дом) могут перемещаться своим ходом. Однако из-за больших начальных затрат такие установки эффективны лишь при больших объемах работ (более 1500 свай). Применяются при квартальной застройке городских микрорайонов.



В качестве погружателей используются молоты, которые различаются по роду привода: молоты внутреннего сгорания (дизельные), паровоздушные и механические (подвесные). Паровоздушные молоты бывают одиночного и двойного действия. В молотах одиночного действия сила пара или сжатого воздуха используется лишь для подъема ударной части, а рабочий ход осуществляется при ее падении на сваю. В молотах двойного действия энергия пара или сжатого воздуха используется для увеличения силы удара. Управление работой молотов бывает ручным, полуавтоматическим и автоматическим.

Основной параметр молота – масса ударной части, которая в зависимости от рода грунта определяет максимально возможную длину погружаемой сваи.

Дизельный молот штангового типа (рис. 3.8, а) включает: шабот с поршнем (2), направляющие штанги (5), ударную часть с цилиндром (4) и поршневого блока, который заканчивается шарнирной опорой, состоящей из сферической пяты и наголовника. Назначение шарнирной опоры – обеспечить центральный удар по свае при незначительном нарушении соосности молота и сваи. Для запуска дизель-молота ударная часть с помощью захвата-кошки поднимается лебедкой копра в крайнее верхнее положение (рис. 3.8, а). После этого захват освобождает ударную часть и при ее падении в цилиндре образуется сжатый воздух, в результате чего температура его сильно повышается. В это время насос плунжерного типа подает топливо в цилиндр и происходит воспламенение смеси (рис. 3.8, б). Образовавшиеся при сгорании газы отбрасывают цилиндр в исходное положение (рис. 3.8, в), и в дальнейшем молот работает автоматически до момента прекращения подачи топлива. Высоту подъема ударной части регулируют подачей топлива в цилиндр.

Для погружения свай применяют дизель-молоты с массой ударной части 600, 1200, 1800 и 2500 кг и числом ударов в минуту 50–100. Высота подъема ударной части молота 1,0–2,6 м. Достоинство дизель-молотов по сравнению с паровоздушными состоит в том, что они более мобильны и не требуют для своей работы громоздких паровых котлов или мощных компрессоров. Недостаток штанговых дизель-молотов проявляется при забивке свай в слабые грунты, когда невозможно обеспечить автоматическую его работу, так как при этом в камере сгорания не образуется высокая степень сжатия воздуха, необходимая для воспламенения топливной смеси.

В трубчатом дизель-молоте (рис. 3.9) (с массой части соответственно 1200, 1800 и 2500 кг) неподвижным является цилиндр (2), а ударной частью служит тяжелый подвижный поршень (4). Цилиндр внизу заканчивается неподвижным шаботом, передающим удар свае через упругую прокладку. Плунжерный насос подает топливо в цилиндр. Отработанные газы выходят в атмосферу через патрубок. Принцип работы трубчатого дизель-молота такой же, как и штангового.

Трубчатые дизель-молоты более надежны в работе и обладают в 1,2–0,5 раза большей погружающей способностью, чем штанговые дизель-молоты.

Недостатком этих молотов является то, что они трудно запускаются при отрицательных температурах.

Механический молот применяют при небольших объемах работ. Он состоит из ударной части массой 1000–3000 кг и захватного устройства. После того как лебедка, размещенная на копре, поднимает на необходимую высоту ударную часть молота, захватное устройство освобождает ее и при свободном падении производится удар по свае. Механические молоты недороги, долговечны и имеют простую конструкцию.

Недостаток их состоит в том, что они производят небольшое количество ударов – 3–4 в минуту, при постоянном закреплении каната к ударной части молота можно увеличить число ударов до 10–12 в минуту, но это приводит к интенсивному износу лебедки и копра.

В паровоздушном молоте двойного действия ударная часть при рабочем ходе находится под действием силы тяжести и давления пара или сжатого воздуха. Благодаря этому скорость движения ударной части значительно выше и количество ударов в минуту увеличилось до 20.

Достоинством этих молотов является их высокая погружающая способность (погружают сваи длиной до 20–25 м), а недостатком – громоздкое и тяжелое паросиловое оборудование. На объектах промышленного и гражданского строительства паровоздушные молоты двойного действия практически не применяются.

Состав процесса:

Разбивка осей свайных рядов;
- Разбивка и закрепление штырями свайных точек;
- Постановка агрегата на точку и постановка на него сваи;
- Наведение при помощи агрегата сваи на проектную точку;
- Погружение с контролем вертикальности и замером отказа;
- При достижении сваей «отказа» погружение прекращается независимо от фактической глубины погружения сваи.

«Отказ » - величина погружения сваи от одного удара из серии в 10 ударов в мм (1,5–4,0 мм), при достижении которой полностью обеспечивается проектная несущая способность сваи.

Доставленные с завода сваи складируются на бровке котлована или раскладываются у места погружения (рис. 3.10).

Закрепление свайных точек в количестве, необходимом «на смену», производится стальными штырями диаметром 12–16 мм длиной 300–400 мм. Свая подтаскивается к копру канатом через рабочий блок (рис. 3.11, а) или через отводной блок (рис. 3.11, б) при расстояниях более 15,0 м.

После постановки сваи на СПУ, выверки в плане и по вертикали запускается молот. До глубины 1,5–3,0 м погружение ведется слабыми ударами молота при сбросе ударной части с половинной высоты. Затем погружение ведется при нормальной работе молота. Непрерывно контролируется вертикальность сваи в двух направлениях. Когда визуально будет заметно, что скорость погружения приближается к расчетному «отказу», устанавливаются приборы контроля – отказомеры, по которым и определяется величина фактического отказа сваи.

При погружении свай ведется «Журнал свайных работ», в котором все сваи должны быть пронумерованы в соответствии с рабочим чертежом. По каждой свае указываются: величина «отказа»; время погружения; глубина погружения, а также особые обстоятельства («отдых», трещины, излом, свая-дублер и т.п.).

После достижения «отказа» сваи СПУ переходит на следующую свайную точку. Недопогруженная часть сваи («попы») впоследствии срезается.

В ходе погружения свай нередко возникают случаи недостижения сваей расчетного «отказа» при погружении ее на полную длину. В этих случаях рекомендуются следующие действия:

Одна свая не получила «отказ», а следующие сваи дают «отказ». Погружение свай продолжают, а рядом с дефектной сваей погружается свая-дублер;

2–5 свай подряд не дают «отказа». В этом случае необходимо прекратить дальнейшее погружение свай. После «отдыха» свай (3–7 дней) производится контрольная добивка. Как правило, в глинистых грунтах проявляется явление «засасывания» сваи и обычно контрольная добивка дает значения менее расчетного «отказа»;

После контрольной добивки группы свай не получено расчетного «отказа». Работы по погружению свай приостанавливаются, вызываются представители проектной организации для уточнения размеров свай (обычно увеличивается длина сваи).

Сдача свайного поля. При сдаче предъявляются:

Акты на погружение свай-дублеров; на замену типов свай;
- акт погружения и испытания пробных свай;
- исполнительная схема погруженных свай;
- паспорта на сваи;
- акты на устройство стыков (при составных сваях);
- журнал свайных работ (с указанием отказа каждой сваи).

Срезка голов свай. Для устройства ростверка необходимо обеспечить проектную отметку верха свай. Это обеспечивается срезкой голов свай на необходимую величину. Процесс срезки достаточно трудоемкий. Сложность заключается в том, что необходимо срезать два различных материала: камень (бетон) и сталь (арматуру), для чего требуются разные технологии и режущие инструменты.

В настоящее время срезка голов свай выполняется в основном вручную с помощью пневматических и электрических молотков. Для уменьшения объема скола бетона (рис. 3.13) используется стальная обжимная рамка. Арматурные стержни режутся огневым способом или отрезными машинами.

Ограниченно применяются механические способы срезки голов свай:

– силовое скалывание гидродомкратами (рис. 3.14, а, б);
– срезание дисковой пилой;
– излом головы сваи специальным оборудованием на базе трактора (рис. 3.14, в).

В настоящее время разрабатываются также термические, взрывные, криогенные технологии срезки голов свай.

Достоинства технологии ударного погружения свай:

Высокая производительность;
- погружение свай практически в любые виды грунтов;
- значительное повышение несущей способности сваи (на 15–30 %) за счет уплотнения грунта под острием.

Недостатки:

Динамическое воздействие на сваю (должен быть запас прочности);
- большие динамические воздействия на здания и сооружения, расположенные рядом.

При наличии рядом со строительной площадкой ветхих или аварийных зданий данная технология неприемлема.

Источник : Технология строительных процессов. Снарский В.И.